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f:(a,+00) — IR, class C* on (ay, +o0) for
all ke N. Germ:

f1={9:(a,+00):FbeR,Vt>b,g(t)=f(t)}

cuts {L | R} where L < R for sets

L., R of previously defined numbers
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Given a differential subfield H (i.e. a Hardy
field) and countable subsets A, B C 'H with
A < B, existence of an f € H* D 'H with

A< f<B.
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In Hardy fields, germs >R are strictly
increasing, have Taylor expansions and inverses
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In fact, the class No of all numbers should be a differential field of surreal valued germs:

Conjecture. There are a derivation
0:No— No
and a composition law

o:No x No”®R — No

such that for each a € No, the function a:INo~™ — No behaves like a germ in a Hardy field.

—_—

For instance, each a should be strictly monotonous and differentiable with @’ = 0(a), we should
have Taylor expansions, and for fixed £ € No~®, the function a+— a o & should be an endomor-
phism of (No, +, -, <).

| have found a truly marvelous proof of that conjecture, which the margins of this short talks
are too narrow to contain.

Let's play a game instead.
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because of your own knowledge of surreal numbers?.
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2. Caveat: | may not be able to turn a sign sequence into the way | represent numbers on the spot, so don’t be
too mean with that.
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Rules of the game:

e You “give’ me a number a, such that you think the composition law o could not be defined
on {a} x No~ R,

You may give me a cut, an algebraic expression, some number you know how to present
because of your own knowledge of surreal numbers?.

e My goal is to convince you that | know what the function ¢: No”® — No; £ +—ao €
should be.

If you win, I'll buy you a drink before the end of times.

“I have a slide for that one”

cui | dec | flip | ite | iwin | nop | them | ulose | vrai

4. Caveat: | may not be able to turn a sign sequence into the way | represent numbers on the spot, so don't be
too mean with that.
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The ordered field of surreal numbers contains a canonical copy of the ordered field of real
numbers:

e surreal numbers {L | R} where L, R are hereditarily finite are dyadic rationals
e If (L, R) is a Dedekind cut of dyadic numbers, then {L | R} is the corresponding real.

The law a+ a o £ should be IR-linear, so 7 should be the constant function & — r for all
r € R C No.

No also contains the ordered semi-ring On of ordinal numbers under the commutative nat-
ural/Hessenberg arithmetic.

e Ordinal numbers are surreal numbers of the form {L | @}.
e each o € On is iductively identified with {{3: < a} | &}.

For instance w={IN | @} is the simplest positive infinite number. It should correspond to the
simplest germ that tends to +o00, i.e. to the identity function w = ¢ +— &.

So elements of R(w) should act as the corresponding rational functions. What else?
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Certain positive numbers m called monomials are additively indecomposable into simpler terms:
they are the simplest elements of their Archimedean class {b >0:IneN>°, %m <b< nm}.

If (m,)~ <, is a strictly decreasing sequence of monomials and (7)<, € R", then one defines
inductively the sum

Z mmv_{z Ty My +qm,:q € (—00,1,) | Z rfymfy—kqmp:qE(rp,—koo)}.

Y<n Y<p v<p

Theorem. [Conway, '76] Every surreal number can be expressed uniquely in such a way. So
numbers are identified with functions Monomials > m+—— r € IR whose support is anti-well-
ordered.

Claim: | can define each n@ in so that for all £ € No~ 1, the following number is well-defined:

a(§) := nl—>z r,mo (&) (n).

Y<n
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Have you stumbled upon w« = {]N | {uﬁ:n EIN>O}}? You must have a retorse mind.

Or are you curious about the inverse number of w*“? What a pleasant, curious and onpen person.

Anyway, this ought to be the simplest function that tends to +oo slower than all positive power
functions: a logaritm?

Unfotunately, | don’t know how to justify that the simplest choice for w = is the inverse of exp,
nor do | know a genetic equation for log. But yes, log = exp™".

This function was defined by Gonshor ('86).
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We have w = {w™ | @}. What is the simplest strictly increasing function that grows faster

than all polynomials?

FUL I R}Y) = {L | R}, f(L) | f(R)}.

...but also has Taylor expansions and behaves like a germ in a Hardy field?

Hardy-type asymptotics entail that the simplest choice for wA“(g + () is wA“(g) wA“(C).

Gonshor ('86) defined the exponential function as follows, for £ ={L | R}

exp(6) = { explt) Y L0 | 20

where [, 7,7 range in L, R and IN respectively.
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You seem to have found a nested number. Well done! those are the worst.

Each monomial m € No (do you know about the Hahn series deccomposition yet?) can be
written as m =e¥ for o =logm a surreal number of a special type.

If one is lucky, the number ¢ is “simpler” in some sense than m, so | can claim inductively that
| know what ¢ is. And then m =exp o ¢. With a bit less luck, going through monomials in ¢
and the inductively so, we end up finding only simpler numbers after some time.

But that may not happen. One may not reach any simpler number.

Theorem. [BERARDUCCI-MANTOVA, 2017] If the process continues indefinitely, then at some
stage, problematic monomials n thus appearing have the form

n= esolie‘@ie%ie'

for some strictly simpler 1, ..., @, ...

With van der Hoeven, we extended this to all numbers using hyperexponentials and their inverses.
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So how do | deal with nested monomials? “An" example is

1/logw+e\/m+e"
logi_|_1w+e"
: . JTogiw+eV .
Suffices to deal with n; =V i ™¢ for some i € N.

For £ € No~ &, what should 1;(¢) be? The answer comes from a simplicity heuristic (a choice)
and Taylor expansions. Rough idea:

e Replace n; with n;oexp,(w)=n;0eq (met the iterates already?). This is simply the simplest

: ,/logi_i_lz-:o—i—e'.
number expanding as eV OB EDG . Also replace & with log,,(&).

e It can be shown that £ = ¢ + ¢ where ¢+ 0 is a truncation of £ as a series, and there is a

- \/10g¢+1€b(s0)+e'.
- 1 i
) expanding as eV '08i<0(@)Fe

simplest monomial 1;(¢

e Choosing 7 large enough, one can insure that ¢ is longest, such that the Taylor expansion

v (F)
nz
(») gk_
k!

of n;() with radius & converges formally. We thus set n;(§) :=>", _
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o(»)

Now for ¢ € No~® and ¢ < (o)

the Taylor expansion of £y at ¢, € converges formally.
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analytic function on R=Y satisfying E(t + 1) =exp(FE(t)) for all > 0.

Indeed since g = {{w, exp(w), exp(exp(w)),...} | &}, the function £y should grow faster than
all finite iterates of exp. Hardy-type asymptotics give an approximation of

g0’ ~ep (logoey) (logologoey) ---=Toey for a transseries 7.

o(»)
”()

So if we can define £ at sufficiently simple ¢'s, then we can extend the definition to all ¢ + ¢
for sufficiently small ¢, by

Now for ¢ € No~® and ¢ < the Taylor expansion of £y at ¢, € converges formally.

(k)
go(p+e):= Z Wa‘k.

kelN
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If that & —n has a strict (hence simpler) truncation  with £ —n — ¢ <
then we define £y(&) via Taylor expansions.

.
éo,(@) for some n € N,
0

(¢)
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If that & —n has a strict (hence simpler) truncation  with £ —n — ¢ < for some n € N,

then we define £y(&) via Taylor expansions.

So it suffices to define €5 on the class Tr of numbers that do not have such truncations. For
v, 1) € Tr, p < 1), monotonicity of £y entails that £ (o(¢)) < €0(1)) where

V¢ € No~ R, £2(¢) = exp®(log°™(¢) £ 1)
This gives an inductive definition, if ¢ is the simplest element of Tr with L < p < R, L, R C Tr:

Eo() = {exp°™(@), ES (o)) :neNALe LY | {€, (o(r)) :nEN AT ERY.

General case of exp,»: proceed inductively, replacing {exp®” € N} by {exp_n:n€ NAn < u}.
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| win the game. Thanks for playing along!

Proof of van DER HOEVEN’S CONJECTURE. Proof by game. If the conjecture were false, then
10 minutes should be enough, to a room full of smart people, to disprove it. But they just lost
the very fair game. Therefore the conjecture is true. ]
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You win!

e O

)

Thanks for playing along (and ruining my project; saves time)!
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