Du Bois Reymond à la Conway (the game)

by Vincent Bagayoko (IMJ-PRG, Paris)

Colloquium Logicum, ÖAW Vienna, 10-09-24

In fact, the class **No** of all numbers should be a differential field of surreal valued germs:

In fact, the class **No** of all numbers should be a differential field of surreal valued germs:

Conjecture. *There are a derivation*

$$
\partial : \mathbf {No} \longrightarrow \mathbf {No}
$$

and a composition law

$$
\circ: \mathbf {No} \times \mathbf {No}^{> \mathbb R} \longrightarrow \mathbf {No}
$$

such that for each $a \in \mathbb{N}$ o, the function $\hat{a} : \mathbb{N}o^{> \mathbb{R}} \longrightarrow \mathbb{N}o$ behaves like a germ in a Hardy field.

In fact, the class **No** of all numbers should be a differential field of surreal valued germs:

Conjecture. *There are a derivation*

$$
\partial\!:\!\mathbf {No}\!\longrightarrow\!\mathbf {No}
$$

and a composition law

$$
\circ: \mathbf {No} \times \mathbf {No}^{> \mathbb R} \longrightarrow \mathbf {No}
$$

such that for each $a \in \mathbb{N}$ o, the function $\hat{a} : \mathbb{N}o^{>R} \longrightarrow \mathbb{N}o$ behaves like a germ in a Hardy field.

For instance, each \hat{a} should be strictly monotonous and differentiable with $\hat{a}'\!=\!\partial(a)$, we should have Taylor expansions, and for fixed $\xi \in \mathbf{No}^{> \mathbb{R}}$, the function $a \mapsto a \circ \xi$ should be an endomorphism of $(\mathbf{No}, +, \cdot, <)$.

In fact, the class **No** of all numbers should be a differential field of surreal valued germs:

Conjecture. *There are a derivation*

$$
\partial\!:\!\mathbf {No}\!\longrightarrow\!\mathbf {No}
$$

and a composition law

$$
\circ: \mathbf {No} \times \mathbf {No}^{> \mathbb R} \longrightarrow \mathbf {No}
$$

such that for each $a \in \mathbb{N}$ o, the function $\hat{a} : \mathbb{N}o^{>R} \longrightarrow \mathbb{N}o$ behaves like a germ in a Hardy field.

For instance, each \hat{a} should be strictly monotonous and differentiable with $\hat{a}'\!=\!\partial(a)$, we should have Taylor expansions, and for fixed $\xi \in \mathbf{No}^{>R}$, the function $a \mapsto a \circ \xi$ should be an endomorphism of $(\mathbf{No}, +, \cdot, <)$.

I have found a truly marvelous proof of that conjecture, which the margins of this short talks are too narrow to contain.

In fact, the class **No** of all numbers should be a differential field of surreal valued germs:

Conjecture. *There are a derivation*

$$
\partial\!:\!\mathbf {No}\!\longrightarrow\!\mathbf {No}
$$

and a composition law

$$
\circ: \mathbf {No} \times \mathbf {No}^{> \mathbb R} \longrightarrow \mathbf {No}
$$

such that for each $a \in \mathbb{N}$ o, the function $\hat{a} : \mathbb{N}o^{>R} \longrightarrow \mathbb{N}o$ behaves like a germ in a Hardy field.

For instance, each \hat{a} should be strictly monotonous and differentiable with $\hat{a}'\!=\!\partial(a)$, we should have Taylor expansions, and for fixed $\xi \in \mathbf{No}^{>R}$, the function $a \mapsto a \circ \xi$ should be an endomorphism of $(\mathbf{No}, +, \cdot, <)$.

I have found a truly marvelous proof of that conjecture, which the margins of this short talks are too narrow to contain.

Let's play a game instead.

Rules of the game:

"I have a slide for that one"

[cui](#page-46-0) [dec](#page-31-0) [flip](#page-37-0) [ite](#page-56-0) [iwin](#page-63-0) [nop](#page-41-0) [them](#page-27-0) [ulose](#page-64-0) [vrai](#page-21-0)

Rules of the game:

 \bullet You "give" me a number a , such that you think the composition law \circ could not be defined on $\{a\} \times \mathbf{No}^{> \mathbb{R}}$.

You may give me a cut, an algebraic expression, some number you know how to present because of your own knowledge of surreal numbers 2 . \hfill

"I have a slide for that one"

[^{2.}](#page-14-0) Caveat: I may not be able to turn a sign sequence into the way I represent numbers on the spot, so don't be too mean with that.

Rules of the game:

 \bullet You "give" me a number a, such that you think the composition law \circ could not be defined on $\{a\} \times \mathbf{No}^{> \mathbb{R}}$.

You may give me a cut, an algebraic expression, some number you know how to present because of your own knowledge of surreal numbers 3 . \hfill

• My goal is to convince you that I know what the function $\hat{a} : \mathbf{No}^{> \mathbb{R}} \longrightarrow \mathbf{No}$; $\xi \mapsto a \circ \xi$ should be.

"I have a slide for that one"

[^{3.}](#page-15-0) Caveat: I may not be able to turn a sign sequence into the way I represent numbers on the spot, so don't be too mean with that.

Rules of the game:

 \bullet You "give" me a number a, such that you think the composition law \circ could not be defined on $\{a\} \times \mathbf{No}^{> \mathbb{R}}$.

You may give me a cut, an algebraic expression, some number you know how to present because of your own knowledge of surreal numbers⁴.

• My goal is to convince you that I know what the function $\hat{a} : \mathbf{No}^{> \mathbb{R}} \longrightarrow \mathbf{No}$; $\xi \mapsto a \circ \xi$ should be.

If you win, I'll buy you a drink before the end of times.

"I have a slide for that one"

[^{4.}](#page-16-0) Caveat: I may not be able to turn a sign sequence into the way I represent numbers on the spot, so don't be too mean with that.

- surreal numbers $\{L \mid R\}$ where L, R are hereditarily finite are dyadic rationals
- If (L, R) is a Dedekind cut of dyadic numbers, then ${L | R}$ is the corresponding real.

- surreal numbers ${L | R}$ where L, R are hereditarily finite are dyadic rationals
- If (L, R) is a Dedekind cut of dyadic numbers, then ${L | R}$ is the corresponding real.

The law $a \mapsto a \circ \xi$ should be R-linear, so \hat{r} should be the constant function $\xi \mapsto r$ for all $r \in \mathbb{R} \subseteq \mathbb{N}$ o.

- surreal numbers ${L | R}$ where L, R are hereditarily finite are dyadic rationals
- \bullet If (L,R) is a Dedekind cut of dyadic numbers, then ${L \mid R}$ is the corresponding real.

The law $a \mapsto a \circ \xi$ should be R-linear, so \hat{r} should be the constant function $\xi \mapsto r$ for all $r \in \mathbb{R} \subseteq$ **No.**

No also contains the ordered semi-ring **On** of ordinal numbers under the commutative nat ural/Hessenberg arithmetic.

- Ordinal numbers are surreal numbers of the form ${L \mid \emptyset}$.
- each $\alpha \in \mathbf{On}$ is iductively identified with $\{\{\beta : \beta < \alpha\} \mid \varnothing\}.$

- surreal numbers ${L | R}$ where L, R are hereditarily finite are dyadic rationals
- If (L,R) is a Dedekind cut of dyadic numbers, then ${L | R}$ is the corresponding real.

The law $a \mapsto a \circ \xi$ should be R-linear, so \hat{r} should be the constant function $\xi \mapsto r$ for all $r \in \mathbb{R} \subseteq$ **No.**

No also contains the ordered semi-ring **On** of ordinal numbers under the commutative nat ural/Hessenberg arithmetic.

- Ordinal numbers are surreal numbers of the form ${L \mid \emptyset}$.
- each $\alpha \in \mathbf{On}$ is iductively identified with $\{\{\beta : \beta < \alpha\} \mid \varnothing\}.$

For instance $\omega = \{N \mid \emptyset\}$ is the simplest positive infinite number. It should correspond to the simplest germ that tends to $+\infty$, i.e. to the identity function $\hat{\omega} = \xi \mapsto \xi$.

- • surreal numbers ${L | R}$ where L, R are hereditarily finite are dyadic rationals
- If (L,R) is a Dedekind cut of dyadic numbers, then ${L | R}$ is the corresponding real.

The law $a \mapsto a \circ \xi$ should be R-linear, so \hat{r} should be the constant function $\xi \mapsto r$ for all $r \in \mathbb{R} \subseteq$ **No.**

No also contains the ordered semi-ring **On** of ordinal numbers under the commutative nat ural/Hessenberg arithmetic.

- Ordinal numbers are surreal numbers of the form ${L \mid \emptyset}$.
- each $\alpha \in \mathbf{On}$ is iductively identified with $\{\{\beta : \beta < \alpha\} \mid \varnothing\}.$

For instance $\omega = \{N \mid \emptyset\}$ is the simplest positive infinite number. It should correspond to the simplest germ that tends to $+\infty$, i.e. to the identity function $\hat{\omega} = \xi \mapsto \xi$.

So elements of $\mathbb{R}(\omega)$ should act as the corresponding rational functions. What else?

Of course.

We already know how to deal with ordinals $<\!\omega^\omega$, since they lie in $\mathbb{R}(\omega).$ For $\alpha\!\geqslant\!\omega^\omega$, I have an inductive method:

Of course.

We already know how to deal with ordinals $<\!\omega^\omega$, since they lie in $\mathbb{R}(\omega).$ For $\alpha\!\geqslant\!\omega^\omega$, I have an inductive method:

If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.

Of course.

We already know how to deal with ordinals $<\!\omega^\omega$, since they lie in $\mathbb{R}(\omega).$ For $\alpha\!\geqslant\!\omega^\omega$, I have an inductive method:

- If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.
- If α is additively indecomposable ordinal but not multiplicatively indecomposable, then $\hat{\alpha}$ is the product of germs of its factors.

Of course.

We already know how to deal with ordinals $<\!\omega^\omega$, since they lie in $\mathbb{R}(\omega).$ For $\alpha\!\geqslant\!\omega^\omega$, I have an inductive method:

- If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.
- If α is additively indecomposable ordinal but not multiplicatively indecomposable, then $\hat{\alpha}$ is the product of germs of its factors.
- • If $\alpha = \omega^{\omega^{\mu}} > \omega$ is not an ε -number, then I express $\hat{\alpha}$ as $\exp \circ \widehat{\omega^{\mu}}$. Know what \exp is? [nop](#page-41-0)e.

Of course.

We already know how to deal with ordinals $<\!\omega^\omega$, since they lie in $\mathbb{R}(\omega).$ For $\alpha\!\geqslant\!\omega^\omega$, I have an inductive method:

- If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.
- If α is additively indecomposable ordinal but not multiplicatively indecomposable, then $\hat{\alpha}$ is the product of germs of its factors.
- If $\alpha = \omega^{\omega^{\mu}} > \omega$ is not an ε -number, then I express $\hat{\alpha}$ as $\exp \circ \widehat{\omega^{\mu}}$. Know what \exp is? [nop](#page-41-0)e.
- If α is an ε -number, then there is some ordinal η such that α is an fixed point of the ω -base exponentiation of (higher order) η but not $\eta + 1$.

Suppose that α is the β -th such fixed point. We then⁹ define α using $\hat{\beta}$ and the ω^η -th [ite](#page-56-0)rate $\exp_{\omega^{\eta}}$ of the exponential...

[^{9.}](#page-26-0) the way to do so is complicated enough that I don't want to expand on this here. If η is a non-zero limit, then this is simply $\hat{\alpha} = \exp_{\omega^{\eta}} \circ (\omega + \hat{\beta})$ where $\omega + \beta$ is the ordinal sum of ω and β .

Of course.

We already know how to deal with ordinals $<\!\omega^\omega$, since they lie in $\mathbb{R}(\omega).$ For $\alpha\!\geqslant\!\omega^\omega$, I have an inductive method:

- If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.
- If α is additively indecomposable ordinal but not multiplicatively indecomposable, then $\hat{\alpha}$ is the product of germs of its factors.
- If $\alpha = \omega^{\omega^{\mu}} > \omega$ is not an ε -number, then I express $\hat{\alpha}$ as $\exp \circ \widehat{\omega^{\mu}}$. Know what \exp is? [nop](#page-41-0)e.
- If α is an ε -number, then there is some ordinal η such that α is an fixed point of the ω -base exponentiation of (higher order) η but not $\eta + 1$.

Suppose that α is the β -th such fixed point. We then 10 define α using $\hat{\beta}$ and the ω^η -th [ite](#page-56-0)rate $\exp_{\omega^{\eta}}$ of the exponential...

[^{10.}](#page-27-1) the way to do so is complicated enough that I don't want to expand on this here. If η is a non-zero limit, then this is simply $\hat{\alpha} = \exp_{\omega^{\eta}} \circ (\omega + \hat{\beta})$ where $\omega + \beta$ is the ordinal sum of ω and β .

Certain positive numbers m called **monomials** are additively indecomposable into simpler terms: they are the simplest elements of their Archimedean class $\left\{b>0:\exists n\in\mathbb{N}^{>0},\frac{1}{n}\mathfrak{m}< b\right\}$ $\frac{1}{n}$ m < *b* < *n* m }.

Certain positive numbers m called **monomials** are additively indecomposable into simpler terms: they are the simplest elements of their Archimedean class $\left\{b>0:\exists n\in\mathbb{N}^{>0},\frac{1}{n}\mathfrak{m}< b\right\}$ $\frac{1}{n}$ m < *b* < *n* m }.

If $(\mathfrak{m}_{\gamma})_{\gamma<\eta}$ is a strictly decreasing sequence of monomials and $(r_{\gamma})_{\gamma<\eta}\!\in\!\mathbb{R}^{\eta}$, then one defines inductively the sum

$$
\sum_{\gamma<\eta} \, r_\gamma \, \mathfrak{m}_\gamma = \Bigg\{\sum_{\gamma<\rho} \, r_\gamma \, \mathfrak{m}_\gamma + q \, \mathfrak{m}_\rho : q \in (-\infty, r_\rho) \ | \ \sum_{\gamma<\rho} \, r_\gamma \, \mathfrak{m}_\gamma + q \, \mathfrak{m}_\rho : q \in (r_\rho, +\infty) \Bigg\}.
$$

Certain positive numbers m called **monomials** are additively indecomposable into simpler terms: they are the simplest elements of their Archimedean class $\left\{b>0:\exists n\in\mathbb{N}^{>0},\frac{1}{n}\mathfrak{m}< b\right\}$ $\frac{1}{n}$ m < *b* < *n* m }.

If $(\mathfrak{m}_{\gamma})_{\gamma<\eta}$ is a strictly decreasing sequence of monomials and $(r_{\gamma})_{\gamma<\eta}\!\in\!\mathbb{R}^{\eta}$, then one defines inductively the sum

$$
\sum_{\gamma<\eta}r_{\gamma}\,\mathfrak{m}_{\gamma}=\Biggl\{\sum_{\gamma<\rho}r_{\gamma}\,\mathfrak{m}_{\gamma}+q\,\mathfrak{m}_{\rho}\,;q\in(-\infty,r_{\rho})\,\,|\,\sum_{\gamma<\rho}r_{\gamma}\,\mathfrak{m}_{\gamma}+q\,\mathfrak{m}_{\rho}\,;q\in(r_{\rho},+\infty)\Biggr\}.
$$

Theorem. [Conway, '76] *Every surreal number can be expressed uniquely in such a way. So numbers* are *identified with functions* **Monomials** \exists $m \longmapsto r \in \mathbb{R}$ *whose support is anti-well- ordered.*

Certain positive numbers m called **monomials** are additively indecomposable into simpler terms: they are the simplest elements of their Archimedean class $\left\{b>0:\exists n\in\mathbb{N}^{>0},\frac{1}{n}\mathfrak{m}< b\right\}$ $\frac{1}{n}$ m < *b* < *n* m }.

If $(\mathfrak{m}_{\gamma})_{\gamma<\eta}$ is a strictly decreasing sequence of monomials and $(r_{\gamma})_{\gamma<\eta}\!\in\!\mathbb{R}^{\eta}$, then one defines inductively the sum

$$
\sum_{\gamma<\eta}r_{\gamma}\,\mathfrak{m}_{\gamma}=\Biggl\{\sum_{\gamma<\rho}r_{\gamma}\,\mathfrak{m}_{\gamma}+q\,\mathfrak{m}_{\rho}\,;q\in(-\infty,r_{\rho})\,\,|\,\sum_{\gamma<\rho}r_{\gamma}\,\mathfrak{m}_{\gamma}+q\,\mathfrak{m}_{\rho}\,;q\in(r_{\rho},+\infty)\Biggr\}.
$$

Theorem. [Conway, '76] *Every surreal number can be expressed uniquely in such a way. So numbers* are *identified with functions* **Monomials** \exists $m \longmapsto r \in \mathbb{R}$ *whose support is anti-well- ordered.*

Claim: I can define each \hat{m}_{γ} in so that for all $\xi \in \mathbf{No}^{> \mathbb{R}}$, the following number is well-defined:

$$
\hat{a}(\xi) := \mathfrak{n} \longmapsto \sum_{\gamma < \eta} r_{\gamma} \widehat{\mathfrak{m}_{\gamma}}(\xi)(\mathfrak{n}).
$$

Logarithm 8/15

Have you stumbled upon $\omega^{\overline{\omega}}\!=\!\{\,\mathbb{N}\mid \{$ 1 $\overline{\omega} = \left\{ N \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$ $\left\{ \frac{1}{n} : n \in \mathbb{N}^{>0} \right\} \Big\}$? You must have a retorse mind.

Logarithm $8/15$

Have you stumbled upon $\omega^{\overline{\omega}}\!=\!\{\,\mathbb{N}\mid \{$ 1 $\overline{\omega} = \left\{ N \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$ $\left\{ \frac{1}{n} : n \in \mathbb{N}^{>0} \right\} \Big\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^ω ? What a pleasant, curious and onpen person.

Logarithm $8/15$

Have you stumbled upon $\omega^{\overline{\omega}}\!=\!\{\,\mathbb{N}\mid \{$ 1 $\overline{\omega} = \left\{ N \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$ $\left\{ \frac{1}{n} : n \in \mathbb{N}^{>0} \right\} \Big\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^ω ? What a pleasant, curious and onpen person.

Logarithm and the state of the state state

Have you stumbled upon $\omega^{\overline{\omega}}\!=\!\{\,\mathbb{N}\mid \{$ 1 $\overline{\omega} = \left\{ N \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$ $\left\{ \frac{1}{n} : n \in \mathbb{N}^{>0} \right\} \Big\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^ω ? What a pleasant, curious and onpen person.

Anyway, this ought to be the simplest function that tends to $+\infty$ slower than all positive power functions: a logaritm?

Logarithm and the state of the state state

Have you stumbled upon $\omega^{\overline{\omega}}\!=\!\{\,\mathbb{N}\mid \{$ 1 $\overline{\omega} = \left\{ N \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$ $\left\{ \frac{1}{n} : n \in \mathbb{N}^{>0} \right\} \Big\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^ω ? What a pleasant, curious and onpen person.

Anyway, this ought to be the simplest function that tends to $+\infty$ slower than all positive power functions: a logaritm?

Unfotunately, I don't know how to justify that the simplest choice for $\omega ^{1/\omega }$ is the inverse of $\exp ,$ nor do I know a genetic equation for \log . But yes, $\log = \exp ^{\mathrm{inv}}$.

Logarithm and the state of the state state

Have you stumbled upon $\omega^{\overline{\omega}}\!=\!\{\,\mathbb{N}\mid \{$ 1 $\overline{\omega} = \left\{ N \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$ $\left\{ \frac{1}{n} : n \in \mathbb{N}^{>0} \right\} \Big\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^ω ? What a pleasant, curious and onpen person.

Anyway, this ought to be the simplest function that tends to $+\infty$ slower than all positive power functions: a logaritm?

Unfotunately, I don't know how to justify that the simplest choice for $\omega ^{1/\omega }$ is the inverse of $\exp ,$ nor do I know a genetic equation for \log . But yes, $\log = \exp ^{\mathrm{inv}}$.

This function was defined by Gonshor ('86).

Exponential 9/15

We have $\omega^\omega = \{\omega^\mathrm{N} \mid \varnothing\}$. What is the simplest strictly increasing function that grows faster than all polynomials?

 $f(\lbrace L | R \rbrace) = \lbrace \lbrace L | R \rbrace^{\mathbb{N}}, f(L) | f(R) \rbrace.$

Exponential expone

We have $\omega^\omega = \{\omega^\mathrm{N} \mid \varnothing\}$. What is the simplest strictly increasing function that grows faster than all polynomials?

```
f(\lbrace L | R \rbrace) = \lbrace \lbrace L | R \rbrace^{\mathbb{N}}, f(L) | f(R) \rbrace.
```
...but also has Taylor expansions and behaves like a germ in a Hardy field?

Exponential expone

We have $\omega^\omega = \{\omega^\mathrm{N} \mid \varnothing\}$. What is the simplest strictly increasing function that grows faster than all polynomials?

$$
f(\{L \mid R\}) = \{\{L \mid R\}^{\mathbb{N}}, f(L) \mid f(R)\}.
$$

...but also has Taylor expansions and behaves like a germ in a Hardy field?

Hardy-type asymptotics entail that the simplest choice for $\hat{\omega}^{\omega}(\xi + \zeta)$ is $\hat{\omega}^{\omega}(\xi) \hat{\omega}^{\omega}(\zeta)$.

Exponential and the state of the

We have $\omega^\omega = \{\omega^\mathrm{N} \mid \varnothing\}$. What is the simplest strictly increasing function that grows faster than all polynomials?

$$
f(\{L \mid R\}) = \{\{L \mid R\}^{\mathbb{N}}, f(L) \mid f(R)\}.
$$

...but also has Taylor expansions and behaves like a germ in a Hardy field? Hardy-type asymptotics entail that the simplest choice for $\widehat{\omega}^{\omega}(\xi + \zeta)$ is $\widehat{\omega}^{\omega}(\xi) \widehat{\omega}^{\omega}(\zeta)$. Gonshor ('86) defined the exponential function as follows, for $\xi = \{L \mid R\}$

$$
\exp(\xi) = \left\{ \exp(l) \sum_{i \leq n} \frac{(\xi - l)^i}{i!} \mid \frac{\exp(r)}{\exp(r)} \right\}
$$

where l, r, i range in L, R and N respectively.

You seem to have found a nested number. Well done! those are the worst.

You seem to have found a nested number. Well done! those are the worst.

Each monomial $m \in \mathbb{N}$ o (do you know about the Hahn series [dec](#page-31-0)composition yet?) can be written as $m = e^{\varphi}$ for $\varphi = \log m$ a surreal number of a special type.

$Nested cuts$ 10/15

You seem to have found a nested number. Well done! those are the worst.

Each monomial $m \in \mathbb{N}$ o (do you know about the Hahn series [dec](#page-31-0)composition yet?) can be written as $m = e^{\varphi}$ for $\varphi = \log m$ a surreal number of a special type.

If one is lucky, the number φ is "simpler" in some sense than m, so I can claim inductively that I know what $\hat{\varphi}$ is. And then $\hat{m} = \exp \circ \hat{\varphi}$. With a bit less luck, going through monomials in φ and the inductively so, we end up finding only simpler numbers after some time.

$Nested cuts$ 10/15

You seem to have found a nested number. Well done! those are the worst.

Each monomial $m \in \mathbb{N}$ o (do you know about the Hahn series [dec](#page-31-0)composition yet?) can be written as $m = e^{\varphi}$ for $\varphi = \log m$ a surreal number of a special type.

If one is lucky, the number φ is "simpler" in some sense than m, so I can claim inductively that I know what $\hat{\varphi}$ is. And then $\hat{m} = \exp \circ \hat{\varphi}$. With a bit less luck, going through monomials in φ and the inductively so, we end up finding only simpler numbers after some time.

But that may not happen. One may not reach any simpler number.

Theorem. [BERARDUCCI-MANTOVA, 2017] *If the process continues indefinitely, then at some stage, problematic monomials* n *thus appearing have the form*

$$
\mathfrak{n} = e^{\varphi_1 \pm e^{\varphi_2 \pm e^{\varphi_3 \pm e^{\cdot \cdot}}}}.
$$

for some strictly simpler $\varphi_1, \ldots, \varphi_n, \ldots$.

$Nested cuts$ 10/15

You seem to have found a nested number. Well done! those are the worst.

Each monomial $m \in \mathbb{N}$ o (do you know about the Hahn series [dec](#page-31-0)composition yet?) can be written as $m = e^{\varphi}$ for $\varphi = \log m$ a surreal number of a special type.

If one is lucky, the number φ is "simpler" in some sense than m, so I can claim inductively that I know what $\hat{\varphi}$ is. And then $\hat{m} = \exp \circ \hat{\varphi}$. With a bit less luck, going through monomials in φ and the inductively so, we end up finding only simpler numbers after some time.

But that may not happen. One may not reach any simpler number.

Theorem. [BERARDUCCI-MANTOVA, 2017] *If the process continues indefinitely, then at some stage, problematic monomials* n *thus appearing have the form*

$$
\mathfrak{n} = e^{\varphi_1 \pm e^{\varphi_2 \pm e^{\varphi_3 \pm e^{\cdot \cdot}}}}.
$$

for some strictly simpler $\varphi_1, \ldots, \varphi_n, \ldots$.

With van der Hoeven, we extended this to all numbers using hyperexponentials and their inverses.

ta a shekara

So how do I deal with nested monomials? "An" example is

$$
\mathfrak{n}\!=\!\mathrm{e}^{\sqrt{\omega}+\mathrm{e}^{\sqrt{\log\omega}+\mathrm{e}^{\sqrt{\log\log\omega}}+\mathrm{e}^{\cdot\,\cdot}}}
$$

$$
\text{Suffices to deal with } \mathfrak{n}_i = \mathrm{e}^{\sqrt{\log_i \omega} + \mathrm{e}^{\sqrt{\log_{i+1} \omega} + \mathrm{e}^{\cdot}}} \quad \text{for some } i \in \mathbb{N}.
$$

(1)

$$
n = e^{\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega}} + e^{\cdot}}}
$$
 (2)

Suffices to deal with $\mathfrak{n}_i \!=\! \mathrm{e}^{\sqrt{\log_i \omega} + \mathrm{e}^{\sqrt{\log_i 1} + 1}}$ $\sqrt{\log_{i+1}\omega} + e^{i}$ ta a shekar for some $i \in \mathbb{N}$.

For $\xi \in \mathbf{No}^{> \mathbb{R}}$, what should $\tilde{\mathfrak{n}}_i(\xi)$ be? The answer comes from a simplicity heuristic (a choice) and Taylor expansions. Rough idea:

So how do I deal with nested monomials? "An" example is

$$
n = e^{\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega}} + e^{\cdot}}}
$$
\n(3)

Suffices to deal with $\mathfrak{n}_i \!=\! \mathrm{e}^{\sqrt{\log_i \omega} + \mathrm{e}^{\sqrt{\log_i 1} + 1}}$ $\sqrt{\log_{i+1}\omega} + e^{i}$ ta a shekara for some $i \in \mathbb{N}$.

For $\xi \in \mathbf{No}^{> \mathbb{R}}$, what should $\tilde{\mathfrak{n}}_i(\xi)$ be? The answer comes from a simplicity heuristic (a choice) and Taylor expansions. Rough idea:

Replace \mathfrak{n}_i with $\mathfrak{n}_i \circ \exp_\omega(\omega) = \mathfrak{n}_i \circ \varepsilon_0$ (met the [ite](#page-56-0)rates already?). This is simply the simplest $number$ expanding as $e^{\sqrt{\log_i \varepsilon_0}+e^{\sqrt{\log_i t}+1}}$ $\sqrt{\log_{i+1} \varepsilon_0} + e^{-\frac{1}{2}}$ ta a shekar . Also replace ξ with $\log_{\omega}(\xi)$.

So how do I deal with nested monomials? "An" example is

$$
n = e^{\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega}} + e^{\cdot}}}
$$
\n(4)

Suffices to deal with $\mathfrak{n}_i \!=\! \mathrm{e}^{\sqrt{\log_i \omega} + \mathrm{e}^{\sqrt{\log_i 1} + 1}}$ $\sqrt{\log_{i+1}\omega} + e^{i}$ ta a shekara for some $i \in \mathbb{N}$.

For $\xi \in \mathbf{No}^{> \mathbb{R}}$, what should $\tilde{\mathfrak{n}_i}(\xi)$ be? The answer comes from a simplicity heuristic (a choice) and Taylor expansions. Rough idea:

- Replace \mathfrak{n}_i with $\mathfrak{n}_i \circ \exp_{\omega}(\omega) = \mathfrak{n}_i \circ \varepsilon_0$ (met the [ite](#page-56-0)rates already?). This is simply the simplest $number$ expanding as $e^{\sqrt{\log_i \varepsilon_0}+e^{\sqrt{\log_i t}+1}}$ $\sqrt{\log i + 1^{\epsilon} 0} + e^{-\frac{1}{\epsilon}}$ ta a shekar . Also replace ξ with $\log_{\omega}(\xi).$
- It can be shown that $\xi = \varphi + \varepsilon$ where $\varphi \neq 0$ is a truncation of ξ as a series, and there is a \sin plest monomial $\hat{\mathfrak{n}}_i(\varphi)$ expanding as $e^{\sqrt{\log_i \hat{\varepsilon_0}(\varphi)}+e^{\sqrt{\log_i+1 \hat{\varepsilon_0}(\varphi)}+e^{-\frac{\hat{\varepsilon_0}}{2\pi i}}}}$. ta a shekara .

$Nested cuts II$

So how do I deal with nested monomials? "An" example is

$$
n = e^{\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega}} + e^{\cdot}}}
$$
\n(5)

Suffices to deal with $\mathfrak{n}_i \!=\! \mathrm{e}^{\sqrt{\log_i \omega} + \mathrm{e}^{\sqrt{\log_i 1} + 1}}$ $\sqrt{\log_{i+1}\omega} + e^{i}$ t in 1970.
Tha bhean for some $i \in \mathbb{N}$.

For $\xi \in \mathbf{No}^{> \mathbb{R}}$, what should $\tilde{\mathfrak{n}_i}(\xi)$ be? The answer comes from a simplicity heuristic (a choice) and Taylor expansions. Rough idea:

- Replace \mathfrak{n}_i with $\mathfrak{n}_i \circ \exp_\omega(\omega) = \mathfrak{n}_i \circ \varepsilon_0$ (met the [ite](#page-56-0)rates already?). This is simply the simplest $number$ expanding as $e^{\sqrt{\log_i \varepsilon_0}+e^{\sqrt{\log_i t}+1}}$ $\sqrt{\log i + 1^{\epsilon} 0} + e^{-\frac{1}{\epsilon}}$ ta a shekar . Also replace ξ with $\log_{\omega}(\xi).$
- It can be shown that $\xi = \varphi + \varepsilon$ where $\varphi \neq 0$ is a truncation of ξ as a series, and there is a \sin plest monomial $\hat{\mathfrak{n}}_i(\varphi)$ expanding as $e^{\sqrt{\log_i \hat{\varepsilon_0}(\varphi)}+e^{\sqrt{\log_i+1 \hat{\varepsilon_0}(\varphi)}+e^{-\frac{\hat{\varepsilon_0}}{2\pi i}}}}$. ta a shekara .
- Choosing *i* large enough, one can insure that φ is longest, such that the Taylor expansion of $\hat{\mathfrak{n}_i}(\varphi)$ with radius ε converges formally. We thus set $\hat{\mathfrak{n}_i}(\xi):=\sum_{k\in\mathbb{N}}\frac{\mathfrak{n}_i{}^{(\kappa)}(\varphi)}{k!}\varepsilon^k.$ $\frac{\hat{\mathfrak{n}_i}^{(k)}(\varphi)}{k!} \, \varepsilon^k.$

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

I claim that $\hat{\varepsilon}_0$ is a surreal version of ABEL/KNESER/ECALLE's ω -th iterate *E* of exp, a realanalytic function on $\mathbb{R}^{\geqslant 0}$ satisfying $E(t+1)\!=\!\exp(E(t))$ for all $t\geqslant 0.$

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

I claim that $\hat{\varepsilon}_0$ is a surreal version of ABEL/KNESER/ECALLE's ω -th iterate E of \exp , a realanalytic function on $\mathbb{R}^{\geqslant 0}$ satisfying $E(t+1)\!=\!\exp(E(t))$ for all $t\geqslant 0.$

Indeed since $\varepsilon_0 = \{\{\omega, \exp(\omega), \exp(\exp(\omega)), ...\} \mid \varnothing\}$, the function $\hat{\varepsilon_0}$ should grow faster than all finite iterates of exp. Hardy-type asymptotics give an approximation of

 $\hat{\varepsilon_0}' \approx \hat{\varepsilon_0} (\log \circ \hat{\varepsilon_0}) (\log \circ \log \circ \hat{\varepsilon_0}) \cdots = T \circ \hat{\varepsilon_0}$ for a transseries *T*.

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

I claim that $\hat{\varepsilon}_0$ is a surreal version of ABEL/KNESER/ECALLE's ω -th iterate *E* of exp, a realanalytic function on $\mathbb{R}^{\geqslant 0}$ satisfying $E(t+1)\!=\!\exp(E(t))$ for all $t\geqslant 0.$

Indeed since $\varepsilon_0 = \{\{\omega, \exp(\omega), \exp(\exp(\omega)), ...\} \mid \varnothing\}$, the function $\hat{\varepsilon_0}$ should grow faster than all finite iterates of exp. Hardy-type asymptotics give an approximation of

 $\hat{\varepsilon_0}' \approx \hat{\varepsilon_0} (\log \circ \hat{\varepsilon_0}) (\log \circ \log \circ \hat{\varepsilon_0}) \cdots = T \circ \hat{\varepsilon_0}$ for a transseries *T*.

Now for $\varphi \in \mathbf{No}^{> \mathbb{R}}$ and $\varepsilon \prec \frac{\hat{\varepsilon_0}(\varphi)}{\hat{\varepsilon_0}'(\varphi)}$, the Ta $\frac{\varepsilon_{0}(\varphi)}{\hat{\varepsilon_{0}}'(\varphi)},$ the Taylor expansion of $\hat{\varepsilon_{0}}$ at φ,ε converges formally.

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

I claim that $\hat{\varepsilon}_0$ is a surreal version of ABEL/KNESER/ECALLE's ω -th iterate *E* of exp, a realanalytic function on $\mathbb{R}^{\geqslant 0}$ satisfying $E(t+1)\!=\!\exp(E(t))$ for all $t\geqslant 0.$

Indeed since $\varepsilon_0 = \{\{\omega, \exp(\omega), \exp(\exp(\omega)), ...\} \mid \varnothing\}$, the function $\hat{\varepsilon_0}$ should grow faster than all finite iterates of exp. Hardy-type asymptotics give an approximation of

$$
\hat{\varepsilon_0}' \approx \hat{\varepsilon_0} (\log \circ \hat{\varepsilon_0}) (\log \circ \log \circ \hat{\varepsilon_0}) \cdots = T \circ \hat{\varepsilon_0} \text{ for a transseries } T.
$$

Now for $\varphi \in \mathbf{No}^{> \mathbb{R}}$ and $\varepsilon \prec \frac{\hat{\varepsilon_0}(\varphi)}{\hat{\varepsilon_0}'(\varphi)}$, the Ta $\frac{\varepsilon_{0}(\varphi)}{\hat{\varepsilon_{0}}'(\varphi)},$ the Taylor expansion of $\hat{\varepsilon_{0}}$ at φ,ε converges formally.

So if we can define $\hat{\varepsilon}_0$ at sufficiently simple φ' s, then we can extend the definition to all $\varphi + \varepsilon$ for sufficiently small ε , by

$$
\hat{\varepsilon_0}(\varphi + \varepsilon) := \sum_{k \in \mathbb{N}} \frac{\hat{\varepsilon_0}^{(k)}(\varphi)}{k!} \varepsilon^k.
$$

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega + 1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi + 1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>R}$.

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega + 1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\epsilon}_0(\xi + 1) = \exp(\hat{\epsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>R}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>R}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega + 1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi + 1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>R}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>R}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

If that $\xi-n$ has a strict (hence simpler) truncation φ with $\xi-n-\varphi<\frac{\hat{\varepsilon_0}(\varphi)}{\hat{\varepsilon_0}'(\varphi)}$ for som $\hat{\varepsilon_0}'(\varphi)$. \blacksquare If that $\xi - n$ has a strict (hence simpler) truncation φ with $\xi - n - \varphi < \frac{\varepsilon_0(\varphi)}{\hat{\varepsilon}_0'(\varphi)}$ for some $n \in \mathbb{N}$,
then we define $\hat{\varepsilon}_0(\xi)$ *via* Taylor expansions.

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega + 1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi + 1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>R}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>R}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

If that $\xi-n$ has a strict (hence simpler) truncation φ with $\xi-n-\varphi<\frac{\hat{\varepsilon_0}(\varphi)}{\hat{\varepsilon_0}'(\varphi)}$ for som $\hat{\varepsilon_0}'(\varphi)$. \blacksquare If that $\xi - n$ has a strict (hence simpler) truncation φ with $\xi - n - \varphi < \frac{\varepsilon_0(\varphi)}{\hat{\varepsilon}_0'(\varphi)}$ for some $n \in \mathbb{N}$,
then we define $\hat{\varepsilon}_0(\xi)$ *via* Taylor expansions.

So it suffices to define $\hat{\varepsilon}_0$ on the class \textbf{Tr} of numbers that do not have such truncations. For $\varphi,\psi\in\mathbf{Tr},\varphi<\psi$, monotonicity of $\hat{\varepsilon_0}$ entails that $\mathcal{E}_n^\pm(\hat{\varepsilon_0}(\varphi))\!<\!\hat{\varepsilon_0}(\psi)$ where

$$
\forall \zeta \in \mathbf{No}^{> \mathbb{R}}, \mathcal{E}_n^{\pm}(\zeta) = \exp^{\circ n}(\log^{\circ n}(\zeta) \pm 1)
$$

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega + 1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi + 1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>R}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>R}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

If that $\xi-n$ has a strict (hence simpler) truncation φ with $\xi-n-\varphi<\frac{\hat{\varepsilon_0}(\varphi)}{\hat{\varepsilon_0}'(\varphi)}$ for som $\hat{\varepsilon_0}'(\varphi)$. \blacksquare If that $\xi - n$ has a strict (hence simpler) truncation φ with $\xi - n - \varphi < \frac{\varepsilon_0(\varphi)}{\hat{\varepsilon}_0'(\varphi)}$ for some $n \in \mathbb{N}$,
then we define $\hat{\varepsilon}_0(\xi)$ *via* Taylor expansions.

So it suffices to define $\hat{\varepsilon}_0$ on the class \textbf{Tr} of numbers that do not have such truncations. For $\varphi,\psi\in\mathbf{Tr},\varphi<\psi$, monotonicity of $\hat{\varepsilon_0}$ entails that $\mathcal{E}_n^\pm(\hat{\varepsilon_0}(\varphi))\!<\!\hat{\varepsilon_0}(\psi)$ where

$$
\forall \zeta \in \mathbf{No}^{> \mathbb{R}}, \mathcal{E}_n^{\pm}(\zeta) = \exp^{\circ n}(\log^{\circ n}(\zeta) \pm 1)
$$

This gives an inductive definition, if φ is the simplest element of Tr with $L < \varphi < R$, $L, R \subseteq$ Tr:

$$
\hat{\varepsilon}_0(\varphi) = \{ \exp^{\circ n}(\varphi), \mathcal{E}_n^+(\hat{\varepsilon}_0(l)) : n \in \mathbb{N} \land l \in L \} \mid \{ \mathcal{E}_n^-(\hat{\varepsilon}_0(r)) : n \in \mathbb{N} \land r \in R \}.
$$

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega + 1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi + 1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>R}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>R}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

If that $\xi-n$ has a strict (hence simpler) truncation φ with $\xi-n-\varphi<\frac{\hat{\varepsilon_0}(\varphi)}{\hat{\varepsilon_0}'(\varphi)}$ for som $\hat{\varepsilon_0}'(\varphi)$. \blacksquare If that $\xi - n$ has a strict (hence simpler) truncation φ with $\xi - n - \varphi < \frac{\varepsilon_0(\varphi)}{\hat{\varepsilon}_0'(\varphi)}$ for some $n \in \mathbb{N}$,
then we define $\hat{\varepsilon}_0(\xi)$ *via* Taylor expansions.

So it suffices to define $\hat{\varepsilon}_0$ on the class \textbf{Tr} of numbers that do not have such truncations. For $\varphi,\psi\in\mathbf{Tr},\varphi<\psi$, monotonicity of $\hat{\varepsilon_0}$ entails that $\mathcal{E}_n^\pm(\hat{\varepsilon_0}(\varphi))\!<\!\hat{\varepsilon_0}(\psi)$ where

$$
\forall \zeta \in \mathbf{No}^{> \mathbb{R}}, \mathcal{E}_n^{\pm}(\zeta) = \exp^{\circ n}(\log^{\circ n}(\zeta) \pm 1)
$$

This gives an inductive definition, if φ is the simplest element of Tr with $L < \varphi < R$, $L, R \subseteq$ Tr:

$$
\hat{\varepsilon}_0(\varphi) = \{ \exp^{\circ n}(\varphi), \mathcal{E}_n^+(\hat{\varepsilon}_0(l)) : n \in \mathbb{N} \land l \in L \} \mid \{ \mathcal{E}_n^-(\hat{\varepsilon}_0(r)) : n \in \mathbb{N} \land r \in R \}.
$$

General case of $\exp_{\omega^{\mu}}$: proceed inductively, replacing $\{\exp^{\circ n}_\in \mathbb{N}\}$ by $\{\exp^{\circ n}_\omega: n\in \mathbb{N}\wedge \eta<\mu\}$.

I win the game. Thanks for playing along!

Proof of VAN DER HOEVEN'S CONJECTURE. Proof by game. If the conjecture were false, then 10 minutes should be enough, to a room full of smart people, to disprove it. But they just lost the very fair game. Therefore the conjecture is true.

Congrats I guess 15/15

You win!

Thanks for playing along (and ruining my project; saves time)!