Du Bois Reymond à la Conway (the game)

BY VINCENT BAGAYOKO (IMJ-PRG, PARIS)

Colloquium Logicum, ÖAW Vienna, 10-09-24

Germs / Hardy fields	Numbers
$f:(a,+\infty)\longrightarrow \mathbb{R}$, class \mathcal{C}^k on $(a_k,+\infty)$ for all $k\in\mathbb{N}$.	
$[f] = \{g: (a, +\infty): \exists b \in \mathbb{R}, \forall t > b, g(t) = f(t)\}$	

Germs / Hardy fields	Numbers
$f:(a,+\infty)\longrightarrow \mathbb{R}$, class \mathcal{C}^k on $(a_k,+\infty)$ for all $k\in\mathbb{N}$.	cuts $\{L \mid R\}$ where $L < R$ for sets
$[f] = \{g: (a, +\infty): \exists b \in \mathbb{R}, \forall t > b, g(t) = f(t)\}$	L, R of previously defined numbers

Germs / Hardy fields	Numbers
$f:(a,+\infty)\longrightarrow\mathbb{R}$, class \mathcal{C}^k on $(a_k,+\infty)$ for all $k\in\mathbb{N}$.	cuts $\{L \mid R\}$ where $L < R$ for sets
Germ:	L, R of previously defined numbers
$[f] = \{g: (a, +\infty): \exists b \in \mathbb{R}, \forall t > b, g(t) = f(t)\}$	
$[f] \leqslant [g]$ if	$\{L \mid R\} \leqslant \{L' \mid R'\} \qquad \text{if} \qquad$
f(t) < g(t) for all sufficiently large t	$L < \{L' \mid R'\} \text{and} \{L \mid R\} < R'$

Germs / Hardy fields	Numbers
$f:(a,+\infty)\longrightarrow \mathbb{R}$, class \mathcal{C}^k on $(a_k,+\infty)$ for all $k\in\mathbb{N}$.	cuts $\{L \mid R\}$ where $L < R$ for sets
Germ:	L, R of previously defined numbers
$[f] = \{g : (a, +\infty) : \exists b \in \mathbb{R}, \forall t > b, g(t) = f(t)\}$	
$[f] \leqslant [g]$ if	$\{L \mid R\} \leqslant \{L' \mid R'\} \qquad \text{if} \qquad$
f(t) < g(t) for all sufficiently large t	$L < \{L' \mid R'\} \text{and} \{L \mid R\} < R'$
pointwise sum, product, derivation, integration, com-	
position of germs, taking limits, solving algebraic,	
differential, functional equations	

Germs / Hardy fields	Numbers
$f:(a,+\infty)\longrightarrow \mathbb{R}$, class \mathcal{C}^k on $(a_k,+\infty)$ for all $k\in\mathbb{N}$.	cuts $\{L \mid R\}$ where $L < R$ for sets
Germ:	L, R of previously defined numbers
$[f] = \{g : (a, +\infty) : \exists b \in \mathbb{R}, \forall t > b, g(t) = f(t)\}$	
$[f] \leqslant [g]$ if	$\{L \mid R\} \leqslant \{L' \mid R'\} \qquad \text{if} \qquad$
f(t) < g(t) for all sufficiently large t	$L < \{L' \mid R'\} \text{and} \{L \mid R\} < R'$
pointwise sum, product, derivation, integration, com-	inductively defined sum and product
position of germs, taking limits, solving algebraic, differential, functional equations	inductively defined infinite sums

Germs / Hardy fields	Numbers
$f:(a,+\infty)\longrightarrow \mathbb{R}$, class \mathcal{C}^k on $(a_k,+\infty)$ for	cuts $\{L \mid R\}$ where $L < R$ for sets
all $k \in \mathbb{N}$. Germ:	L, R of previously defined numbers
$[f] = \{g : (a, +\infty) : \exists b \in \mathbb{R}, \forall t > b, g(t) = f(t)\}$	
$[f] \leqslant [g]$ if	$\{L \mid R\} \leqslant \{L' \mid R'\} \qquad \text{if} \qquad$
f(t) < g(t) for all sufficiently large t	$L < \{L' \mid R'\} \text{and} \{L \mid R\} < R'$
pointwise sum, product, derivation, integration,	inductively defined sum and product
composition of germs, taking limits, solving algebraic, differential, functional equations	inductively defined infinite sums
Given a differential subfield ${\mathcal H}$ (i.e. a Hardy	given sets A, B of numbers, existence of a
field) and countable subsets $A,B\subseteq \mathcal{H}$ with	simplest number $\{A \mid B\}$ with
$A < B$, existence of an $f \in \mathcal{H}^* \supseteq \mathcal{H}$ with	
	$A < \{A \mid B\} < B.$
A < f < B.	

Germs / Hardy fields	Numbers
$f:(a,+\infty)\longrightarrow \mathbb{R}$, class \mathcal{C}^k on $(a_k,+\infty)$ for	cuts $\{L \mid R\}$ where $L < R$ for sets
all $k \in \mathbb{N}$. Germ:	L, R of previously defined numbers
$[f] = \{g: (a, +\infty): \exists b \in \mathbb{R}, \forall t > b, g(t) = f(t)\}$	
$[f] \leqslant [g]$ if	$\{L \mid R\} \leqslant \{L' \mid R'\} \qquad \text{if} \qquad$
f(t) < g(t) for all sufficiently large t	$L < \{L' \mid R'\} \text{and} \{L \mid R\} < R'$
pointwise sum, product, derivation, integration,	inductively defined sum and product
composition of germs, taking limits, solving	inductively defined infinite sums
algebraic, differential, functional equations	inductively defined infinite sums
Given a differential subfield ${\cal H}$ (i.e. a Hardy	given sets A, B of numbers, existence of a
field) and countable subsets $A, B \subseteq \mathcal{H}$ with	simplest number $\{A \mid B\}$ with
$A {<} B$, existence of an $f {\in} \mathcal{H}^* {\supseteq} \mathcal{H}$ with	
	$A < \{A \mid B\} < B.$
A < f < B.	
In Hardy fields, germs $>\mathbb{R}$ are strictly	
increasing, have Taylor expansions and inverses	

In fact, the class No of all numbers should be a differential field of surreal valued germs:

In fact, the class No of all numbers should be a differential field of surreal valued germs:

Conjecture. There are a derivation

$$\partial : \mathbf{No} \longrightarrow \mathbf{No}$$

and a composition law

$$\circ: \mathbf{No} \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}$$

such that for each $a \in \mathbf{No}$, the function $\hat{a} : \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}$ behaves like a germ in a Hardy field.

In fact, the class No of all numbers should be a differential field of surreal valued germs:

Conjecture. There are a derivation

$$\partial: \mathbf{No} \longrightarrow \mathbf{No}$$

and a composition law

$$\circ: \mathbf{No} \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}$$

such that for each $a \in \mathbf{No}$, the function $\hat{a} : \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}$ behaves like a germ in a Hardy field.

For instance, each \hat{a} should be strictly monotonous and differentiable with $\hat{a}' = \hat{\partial}(a)$, we should have Taylor expansions, and for fixed $\xi \in \mathbf{No}^{>\mathbb{R}}$, the function $a \mapsto a \circ \xi$ should be an endomorphism of $(\mathbf{No}, +, \cdot, <)$.

In fact, the class No of all numbers should be a differential field of surreal valued germs:

Conjecture. There are a derivation

$$\partial : \mathbf{No} \longrightarrow \mathbf{No}$$

and a composition law

$$\circ: \mathbf{No} imes \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}$$

such that for each $a \in \mathbf{No}$, the function $\hat{a} : \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}$ behaves like a germ in a Hardy field.

For instance, each \hat{a} should be strictly monotonous and differentiable with $\hat{a}' = \hat{\partial}(a)$, we should have Taylor expansions, and for fixed $\xi \in \mathbf{No}^{>\mathbb{R}}$, the function $a \mapsto a \circ \xi$ should be an endomorphism of $(\mathbf{No}, +, \cdot, <)$.

I have found a truly marvelous proof of that conjecture, which the margins of this short talks are too narrow to contain.

In fact, the class No of all numbers should be a differential field of surreal valued germs:

Conjecture. There are a derivation

$$\partial: \mathbf{No} \longrightarrow \mathbf{No}$$

and a composition law

$$\circ: \mathbf{No} imes \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}$$

such that for each $a \in \mathbf{No}$, the function $\hat{a} : \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}$ behaves like a germ in a Hardy field.

For instance, each \hat{a} should be strictly monotonous and differentiable with $\hat{a}' = \hat{\partial}(a)$, we should have Taylor expansions, and for fixed $\xi \in \mathbf{No}^{>\mathbb{R}}$, the function $a \mapsto a \circ \xi$ should be an endomorphism of $(\mathbf{No}, +, \cdot, <)$.

I have found a truly marvelous proof of that conjecture, which the margins of this short talks are too narrow to contain.

Let's play a game instead.

Rules of the game:

"I have a slide for that one"

cui dec flip ite iwin nop them ulose vrai

Rules of the game:

 You "give" me a number a, such that you think the composition law ○ could not be defined on {a} × No^{>ℝ}.

You may give me a cut, an algebraic expression, some number you know how to present because of your own knowledge of surreal numbers².

"I have a slide for that one"

cui	dec	flip	ite	iwin	nop	them	ulose	vrai
-----	-----	------	-----	------	-----	------	-------	------

^{2.} Caveat: I may not be able to turn a sign sequence into the way I represent numbers on the spot, so don't be too mean with that.

Rules of the game:

 You "give" me a number a, such that you think the composition law ○ could not be defined on {a} × No^{>ℝ}.

You may give me a cut, an algebraic expression, some number you know how to present because of your own knowledge of surreal numbers³.

 My goal is to convince you that I know what the function â : No^{>ℝ} → No; ξ → a ∘ ξ should be.

"I have a slide for that one"

	cui	dec	flip	ite	iwin	nop	them	ulose	vrai
--	-----	-----	------	-----	------	-----	------	-------	------

^{3.} Caveat: I may not be able to turn a sign sequence into the way I represent numbers on the spot, so don't be too mean with that.

Rules of the game:

 You "give" me a number a, such that you think the composition law ○ could not be defined on {a} × No^{>ℝ}.

You may give me a cut, an algebraic expression, some number you know how to present because of your own knowledge of surreal numbers⁴.

• My goal is to convince you that I know what the function $\hat{a} : \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}; \ \xi \mapsto a \circ \xi$ should be.

If you win, I'll buy you a drink before the end of times.

"I have a slide for that one"

|--|

^{4.} Caveat: I may not be able to turn a sign sequence into the way I represent numbers on the spot, so don't be too mean with that.

Reals and small ordinals

The ordered field of surreal numbers contains a canonical copy of the ordered field of real numbers:

- surreal numbers $\{L \mid R\}$ where L, R are hereditarily finite are dyadic rationals
- If (L, R) is a Dedekind cut of dyadic numbers, then $\{L \mid R\}$ is the corresponding real.

- surreal numbers $\{L \mid R\}$ where L, R are hereditarily finite are dyadic rationals
- If (L, R) is a Dedekind cut of dyadic numbers, then $\{L \mid R\}$ is the corresponding real.

The law $a \mapsto a \circ \xi$ should be \mathbb{R} -linear, so \hat{r} should be the constant function $\xi \mapsto r$ for all $r \in \mathbb{R} \subseteq \mathbf{No}$.

- surreal numbers $\{L \mid R\}$ where L, R are hereditarily finite are dyadic rationals
- If (L, R) is a Dedekind cut of dyadic numbers, then $\{L \mid R\}$ is the corresponding real.

The law $a \mapsto a \circ \xi$ should be \mathbb{R} -linear, so \hat{r} should be the constant function $\xi \mapsto r$ for all $r \in \mathbb{R} \subseteq \mathbf{No}$.

 ${\bf No}$ also contains the ordered semi-ring ${\bf On}$ of ordinal numbers under the commutative natural/Hessenberg arithmetic.

- Ordinal numbers are surreal numbers of the form $\{L \mid \emptyset\}$.
- each $\alpha \in \mathbf{On}$ is iductively identified with $\{\{\beta : \beta < \alpha\} \mid \varnothing\}$.

- surreal numbers $\{L \mid R\}$ where L, R are hereditarily finite are dyadic rationals
- If (L, R) is a Dedekind cut of dyadic numbers, then $\{L \mid R\}$ is the corresponding real.

The law $a \mapsto a \circ \xi$ should be \mathbb{R} -linear, so \hat{r} should be the constant function $\xi \mapsto r$ for all $r \in \mathbb{R} \subseteq \mathbf{No}$.

 ${\bf No}$ also contains the ordered semi-ring ${\bf On}$ of ordinal numbers under the commutative natural/Hessenberg arithmetic.

- Ordinal numbers are surreal numbers of the form $\{L \mid \varnothing\}$.
- each $\alpha \in \mathbf{On}$ is iductively identified with $\{\{\beta : \beta < \alpha\} \mid \varnothing\}$.

For instance $\omega = \{\mathbb{N} \mid \emptyset\}$ is the simplest positive infinite number. It should correspond to the simplest germ that tends to $+\infty$, i.e. to the identity function $\hat{\omega} = \xi \mapsto \xi$.

- surreal numbers $\{L \mid R\}$ where L, R are hereditarily finite are dyadic rationals
- If (L, R) is a Dedekind cut of dyadic numbers, then $\{L \mid R\}$ is the corresponding real.

The law $a \mapsto a \circ \xi$ should be \mathbb{R} -linear, so \hat{r} should be the constant function $\xi \mapsto r$ for all $r \in \mathbb{R} \subseteq \mathbf{No}$.

 ${\bf No}$ also contains the ordered semi-ring ${\bf On}$ of ordinal numbers under the commutative natural/Hessenberg arithmetic.

- Ordinal numbers are surreal numbers of the form $\{L \mid \emptyset\}$.
- each $\alpha \in \mathbf{On}$ is iductively identified with $\{\{\beta : \beta < \alpha\} \mid \varnothing\}$.

For instance $\omega = \{\mathbb{N} \mid \emptyset\}$ is the simplest positive infinite number. It should correspond to the simplest germ that tends to $+\infty$, i.e. to the identity function $\hat{\omega} = \xi \mapsto \xi$.

So elements of $\mathbb{R}(\omega)$ should act as the corresponding rational functions. What else?

Of course.

We already know how to deal with ordinals $< \omega^{\omega}$, since they lie in $\mathbb{R}(\omega)$. For $\alpha \ge \omega^{\omega}$, I have an inductive method:

Of course.

We already know how to deal with ordinals $< \omega^{\omega}$, since they lie in $\mathbb{R}(\omega)$. For $\alpha \ge \omega^{\omega}$, I have an inductive method:

• If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.

Of course.

We already know how to deal with ordinals $< \omega^{\omega}$, since they lie in $\mathbb{R}(\omega)$. For $\alpha \ge \omega^{\omega}$, I have an inductive method:

- If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.
- If α is additively indecomposable ordinal but not multiplicatively indecomposable, then $\hat{\alpha}$ is the product of germs of its factors.

Of course.

We already know how to deal with ordinals $< \omega^{\omega}$, since they lie in $\mathbb{R}(\omega)$. For $\alpha \ge \omega^{\omega}$, I have an inductive method:

- If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.
- If α is additively indecomposable ordinal but not multiplicatively indecomposable, then $\hat{\alpha}$ is the product of germs of its factors.
- If $\alpha = \omega^{\omega^{\mu}} > \omega$ is not an ε -number, then I express $\hat{\alpha}$ as $\exp \circ \hat{\omega^{\mu}}$. Know what \exp is? nope.

Of course.

We already know how to deal with ordinals $< \omega^{\omega}$, since they lie in $\mathbb{R}(\omega)$. For $\alpha \ge \omega^{\omega}$, I have an inductive method:

- If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.
- If α is additively indecomposable ordinal but not multiplicatively indecomposable, then $\hat{\alpha}$ is the product of germs of its factors.
- If $\alpha = \omega^{\omega^{\mu}} > \omega$ is not an ε -number, then I express $\hat{\alpha}$ as $\exp \circ \hat{\omega^{\mu}}$. Know what \exp is? nope.
- If α is an ε -number, then there is some ordinal η such that α is an fixed point of the ω -base exponentiation of (higher order) η but not $\eta + 1$.

Suppose that α is the β -th such fixed point. We then⁹ define α using $\hat{\beta}$ and the ω^{η} -th iterate $\exp_{\omega^{\eta}}$ of the exponential...

^{9.} the way to do so is complicated enough that I don't want to expand on this here. If η is a non-zero limit, then this is simply $\hat{\alpha} = \exp_{\omega^{\eta}} \circ (\widehat{\omega + \beta})$ where $\omega + \beta$ is the ordinal sum of ω and β .

Of course.

We already know how to deal with ordinals $< \omega^{\omega}$, since they lie in $\mathbb{R}(\omega)$. For $\alpha \ge \omega^{\omega}$, I have an inductive method:

- If α is not additively indecomposable, then its germ $\hat{\alpha}$ is the sum of germs of its (Cantor normal form) summands.
- If α is additively indecomposable ordinal but not multiplicatively indecomposable, then $\hat{\alpha}$ is the product of germs of its factors.
- If $\alpha = \omega^{\omega^{\mu}} > \omega$ is not an ε -number, then I express $\hat{\alpha}$ as $\exp \circ \hat{\omega^{\mu}}$. Know what \exp is? nope.
- If α is an ε -number, then there is some ordinal η such that α is an fixed point of the ω -base exponentiation of (higher order) η but not $\eta + 1$.

Suppose that α is the β -th such fixed point. We then¹⁰ define α using $\hat{\beta}$ and the ω^{η} -th iterate $\exp_{\omega^{\eta}}$ of the exponential...

^{10.} the way to do so is complicated enough that I don't want to expand on this here. If η is a non-zero limit, then this is simply $\hat{\alpha} = \exp_{\omega^{\eta}} \circ (\widehat{\omega + \beta})$ where $\omega + \beta$ is the ordinal sum of ω and β .

Certain positive numbers \mathfrak{m} called **monomials** are additively indecomposable into simpler terms: they are the simplest elements of their Archimedean class $\{b > 0 : \exists n \in \mathbb{N}^{>0}, \frac{1}{n} \mathfrak{m} < b < n \mathfrak{m}\}$.

Certain positive numbers \mathfrak{m} called **monomials** are additively indecomposable into simpler terms: they are the simplest elements of their Archimedean class $\{b > 0 : \exists n \in \mathbb{N}^{>0}, \frac{1}{n} \mathfrak{m} < b < n \mathfrak{m}\}$.

If $(\mathfrak{m}_{\gamma})_{\gamma < \eta}$ is a strictly decreasing sequence of monomials and $(r_{\gamma})_{\gamma < \eta} \in \mathbb{R}^{\eta}$, then one defines inductively the sum

$$\sum_{\gamma < \eta} r_{\gamma} \mathfrak{m}_{\gamma} = \left\{ \sum_{\gamma < \rho} r_{\gamma} \mathfrak{m}_{\gamma} + q \mathfrak{m}_{\rho} : q \in (-\infty, r_{\rho}) \mid \sum_{\gamma < \rho} r_{\gamma} \mathfrak{m}_{\gamma} + q \mathfrak{m}_{\rho} : q \in (r_{\rho}, +\infty) \right\}.$$

Certain positive numbers \mathfrak{m} called **monomials** are additively indecomposable into simpler terms: they are the simplest elements of their Archimedean class $\{b > 0 : \exists n \in \mathbb{N}^{>0}, \frac{1}{n} \mathfrak{m} < b < n \mathfrak{m}\}$.

If $(\mathfrak{m}_{\gamma})_{\gamma < \eta}$ is a strictly decreasing sequence of monomials and $(r_{\gamma})_{\gamma < \eta} \in \mathbb{R}^{\eta}$, then one defines inductively the sum

$$\sum_{\gamma < \eta} r_{\gamma} \mathfrak{m}_{\gamma} = \Biggl\{ \sum_{\gamma < \rho} r_{\gamma} \mathfrak{m}_{\gamma} + q \mathfrak{m}_{\rho} : q \in (-\infty, r_{\rho}) \mid \sum_{\gamma < \rho} r_{\gamma} \mathfrak{m}_{\gamma} + q \mathfrak{m}_{\rho} : q \in (r_{\rho}, +\infty) \Biggr\}.$$

Theorem. [Conway, '76] Every surreal number can be expressed uniquely in such a way. So numbers are identified with functions **Monomials** $\ni \mathfrak{m} \mapsto r \in \mathbb{R}$ whose support is anti-well-ordered.

Certain positive numbers \mathfrak{m} called **monomials** are additively indecomposable into simpler terms: they are the simplest elements of their Archimedean class $\{b > 0 : \exists n \in \mathbb{N}^{>0}, \frac{1}{n} \mathfrak{m} < b < n \mathfrak{m}\}$.

If $(\mathfrak{m}_{\gamma})_{\gamma < \eta}$ is a strictly decreasing sequence of monomials and $(r_{\gamma})_{\gamma < \eta} \in \mathbb{R}^{\eta}$, then one defines inductively the sum

$$\sum_{\gamma < \eta} r_{\gamma} \mathfrak{m}_{\gamma} = \Biggl\{ \sum_{\gamma < \rho} r_{\gamma} \mathfrak{m}_{\gamma} + q \mathfrak{m}_{\rho} : q \in (-\infty, r_{\rho}) \mid \sum_{\gamma < \rho} r_{\gamma} \mathfrak{m}_{\gamma} + q \mathfrak{m}_{\rho} : q \in (r_{\rho}, +\infty) \Biggr\}.$$

Theorem. [Conway, '76] Every surreal number can be expressed uniquely in such a way. So numbers are identified with functions **Monomials** $\ni \mathfrak{m} \mapsto r \in \mathbb{R}$ whose support is anti-well-ordered.

Claim: I can define each $\widehat{\mathfrak{m}}_{\gamma}$ in so that for all $\xi \in \mathbf{No}^{>\mathbb{R}}$, the following number is well-defined:

$$\hat{a}(\xi) := \mathfrak{n} \longmapsto \sum_{\gamma < \eta} r_{\gamma} \, \widehat{\mathfrak{m}}_{\gamma}(\xi)(\mathfrak{n}).$$

Have you stumbled upon $\omega^{\frac{1}{\omega}} = \left\{ \mathbb{N} \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$? You must have a retorse mind.

Have you stumbled upon $\omega^{\frac{1}{\omega}} = \left\{ \mathbb{N} \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^{ω} ? What a pleasant, curious and onpen person.

Have you stumbled upon $\omega^{\frac{1}{\omega}} = \left\{ \mathbb{N} \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^{ω} ? What a pleasant, curious and onpen person.

Have you stumbled upon $\omega^{\frac{1}{\omega}} = \left\{ \mathbb{N} \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^{ω} ? What a pleasant, curious and onpen person.

Anyway, this ought to be the simplest function that tends to $+\infty$ slower than all positive power functions: a logaritm?

Have you stumbled upon $\omega^{\frac{1}{\omega}} = \left\{ \mathbb{N} \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^{ω} ? What a pleasant, curious and onpen person.

Anyway, this ought to be the simplest function that tends to $+\infty$ slower than all positive power functions: a logaritm?

Unfotunately, I don't know how to justify that the simplest choice for $\omega^{1/\omega}$ is the inverse of exp, nor do I know a genetic equation for log. But yes, $\log = \exp^{inv}$.

Have you stumbled upon $\omega^{\frac{1}{\omega}} = \left\{ \mathbb{N} \mid \left\{ \omega^{\frac{1}{n}} : n \in \mathbb{N}^{>0} \right\} \right\}$? You must have a retorse mind.

Or are you curious about the inverse number of ω^{ω} ? What a pleasant, curious and onpen person.

Anyway, this ought to be the simplest function that tends to $+\infty$ slower than all positive power functions: a logaritm?

Unfotunately, I don't know how to justify that the simplest choice for $\omega^{1/\omega}$ is the inverse of exp, nor do I know a genetic equation for log. But yes, $\log = \exp^{inv}$.

This function was defined by Gonshor ('86).

We have $\omega^{\omega} = \{\omega^{\mathbb{N}} \mid \emptyset\}$. What is the simplest strictly increasing function that grows faster than all polynomials?

 $f(\{L \mid R\}) = \{\{L \mid R\}^{\mathbb{N}}, f(L) \mid f(R)\}.$

We have $\omega^{\omega} = \{\omega^{\mathbb{N}} \mid \emptyset\}$. What is the simplest strictly increasing function that grows faster than all polynomials?

$$f(\{L \mid R\}) = \{\{L \mid R\}^{\mathbb{N}}, f(L) \mid f(R)\}.$$

... but also has Taylor expansions and behaves like a germ in a Hardy field?

We have $\omega^{\omega} = \{\omega^{\mathbb{N}} \mid \emptyset\}$. What is the simplest strictly increasing function that grows faster than all polynomials?

$$f(\{L \mid R\}) = \{\{L \mid R\}^{\mathbb{N}}, f(L) \mid f(R)\}.$$

... but also has Taylor expansions and behaves like a germ in a Hardy field?

Hardy-type asymptotics entail that the simplest choice for $\widehat{\omega^{\omega}}(\xi + \zeta)$ is $\widehat{\omega^{\omega}}(\xi) \widehat{\omega^{\omega}}(\zeta)$.

We have $\omega^{\omega} = \{\omega^{\mathbb{N}} \mid \emptyset\}$. What is the simplest strictly increasing function that grows faster than all polynomials?

$$f(\{L \mid R\}) = \{\{L \mid R\}^{\mathbb{N}}, f(L) \mid f(R)\}.$$

... but also has Taylor expansions and behaves like a germ in a Hardy field? Hardy-type asymptotics entail that the simplest choice for $\widehat{\omega}^{\omega}(\xi + \zeta)$ is $\widehat{\omega}^{\omega}(\xi) \widehat{\omega}^{\omega}(\zeta)$. Gonshor ('86) defined the exponential function as follows, for $\xi = \{L \mid R\}$

$$\exp(\xi) = \left\{ \exp(l) \sum_{i \leqslant n} \frac{(\xi - l)^i}{i!} \mid \frac{\exp(r)}{i!} \right\}$$

where l, r, i range in L, R and \mathbb{N} respectively.

You seem to have found a nested number. Well done! those are the worst.

You seem to have found a nested number. Well done! those are the worst.

Each monomial $\mathfrak{m} \in \mathbf{No}$ (do you know about the Hahn series deccomposition yet?) can be written as $\mathfrak{m} = e^{\varphi}$ for $\varphi = \log \mathfrak{m}$ a surreal number of a special type.

You seem to have found a nested number. Well done! those are the worst.

Each monomial $\mathfrak{m} \in \mathbf{No}$ (do you know about the Hahn series deccomposition yet?) can be written as $\mathfrak{m} = e^{\varphi}$ for $\varphi = \log \mathfrak{m}$ a surreal number of a special type.

If one is lucky, the number φ is "simpler" in some sense than \mathfrak{m} , so I can claim inductively that I know what $\hat{\varphi}$ is. And then $\hat{\mathfrak{m}} = \exp \circ \hat{\varphi}$. With a bit less luck, going through monomials in φ and the inductively so, we end up finding only simpler numbers after some time.

You seem to have found a nested number. Well done! those are the worst.

Each monomial $\mathfrak{m} \in \mathbf{No}$ (do you know about the Hahn series deccomposition yet?) can be written as $\mathfrak{m} = e^{\varphi}$ for $\varphi = \log \mathfrak{m}$ a surreal number of a special type.

If one is lucky, the number φ is "simpler" in some sense than \mathfrak{m} , so I can claim inductively that I know what $\hat{\varphi}$ is. And then $\hat{\mathfrak{m}} = \exp \circ \hat{\varphi}$. With a bit less luck, going through monomials in φ and the inductively so, we end up finding only simpler numbers after some time.

But that may not happen. One may not reach any simpler number.

Theorem. [BERARDUCCI-MANTOVA, 2017] If the process continues indefinitely, then at some stage, problematic monomials \mathfrak{n} thus appearing have the form

$$\mathfrak{n} = \mathrm{e}^{\varphi_1 \pm \mathrm{e}^{\varphi_2 \pm \mathrm{e}^{\varphi_3 \pm \mathrm{e}^{\cdot}}}}$$

for some strictly simpler $\varphi_1, \ldots, \varphi_n, \ldots$

You seem to have found a nested number. Well done! those are the worst.

Each monomial $\mathfrak{m} \in \mathbf{No}$ (do you know about the Hahn series deccomposition yet?) can be written as $\mathfrak{m} = e^{\varphi}$ for $\varphi = \log \mathfrak{m}$ a surreal number of a special type.

If one is lucky, the number φ is "simpler" in some sense than \mathfrak{m} , so I can claim inductively that I know what $\hat{\varphi}$ is. And then $\hat{\mathfrak{m}} = \exp \circ \hat{\varphi}$. With a bit less luck, going through monomials in φ and the inductively so, we end up finding only simpler numbers after some time.

But that may not happen. One may not reach any simpler number.

Theorem. [BERARDUCCI-MANTOVA, 2017] If the process continues indefinitely, then at some stage, problematic monomials \mathfrak{n} thus appearing have the form

$$\mathfrak{n} = \mathrm{e}^{\varphi_1 \pm \mathrm{e}^{\varphi_2 \pm \mathrm{e}^{\varphi_3 \pm \mathrm{e}^{\cdot}}}}$$

for some strictly simpler $\varphi_1, \ldots, \varphi_n, \ldots$.

With van der Hoeven, we extended this to all numbers using hyperexponentials and their inverses.

So how do I deal with nested monomials? "An" example is

$$\mathfrak{n} = e^{\sqrt{\omega} + e^{\sqrt{\log \omega}} + e^{\sqrt{\log \log \omega}} + e^{\cdot}}$$

Suffices to deal with
$$n_i = e^{\sqrt{\log_i \omega} + e^{\sqrt{\log_{i+1} \omega} + e^{-\frac{1}{2}}}}$$
 for some $i \in \mathbb{N}$.

(1)

$$\mathfrak{n} = e^{\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\cdot}}}}$$
(2)

Suffices to deal with $n_i = e^{\sqrt{\log_i \omega} + e^{\sqrt{\log_{i+1} \omega} + e^{\cdot i}}}$ for some $i \in \mathbb{N}$.

For $\xi \in \mathbf{No}^{>\mathbb{R}}$, what should $\tilde{\mathfrak{n}}_i(\xi)$ be? The answer comes from a simplicity heuristic (a choice) and Taylor expansions. Rough idea:

So how do I deal with nested monomials? "An" example is

$$\mathfrak{n} = e^{\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\cdot}}}}$$
(3)

Suffices to deal with $n_i = e^{\sqrt{\log_i \omega} + e^{\sqrt{\log_{i+1} \omega} + e^{\cdot i}}}$ for some $i \in \mathbb{N}$.

For $\xi \in \mathbf{No}^{>\mathbb{R}}$, what should $\tilde{\mathfrak{n}}_i(\xi)$ be? The answer comes from a simplicity heuristic (a choice) and Taylor expansions. Rough idea:

• Replace \mathfrak{n}_i with $\mathfrak{n}_i \circ \exp_{\omega}(\omega) = \mathfrak{n}_i \circ \varepsilon_0$ (met the iterates already?). This is simply the simplest number expanding as $e^{\sqrt{\log_i \varepsilon_0} + e^{\sqrt{\log_i \varepsilon_0} + e^{\sqrt$

So how do I deal with nested monomials? "An" example is

$$\mathfrak{n} = e^{\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\cdot}}}}$$
(4)

Suffices to deal with $n_i = e^{\sqrt{\log_i \omega} + e^{\sqrt{\log_{i+1} \omega} + e^{\cdot i}}}$ for some $i \in \mathbb{N}$.

For $\xi \in \mathbf{No}^{>\mathbb{R}}$, what should $\tilde{\mathfrak{n}}_i(\xi)$ be? The answer comes from a simplicity heuristic (a choice) and Taylor expansions. Rough idea:

- Replace \mathfrak{n}_i with $\mathfrak{n}_i \circ \exp_{\omega}(\omega) = \mathfrak{n}_i \circ \varepsilon_0$ (met the iterates already?). This is simply the simplest number expanding as $e^{\sqrt{\log_i \varepsilon_0} + e^{\sqrt{\log_i \varepsilon_0} + e^{\sqrt$
- It can be shown that $\xi = \varphi + \varepsilon$ where $\varphi \neq 0$ is a truncation of ξ as a series, and there is a simplest monomial $\hat{n}_i(\varphi)$ expanding as $e^{\sqrt{\log_i \hat{c_0}(\varphi)} + e^{\sqrt{\log_{i+1} \hat{c_0}(\varphi)} + e^{\sqrt{\log_$

So how do I deal with nested monomials? "An" example is

$$\mathfrak{n} = e^{\sqrt{\omega} + e^{\sqrt{\log \omega} + e^{\sqrt{\log \log \omega} + e^{\cdot}}}}$$
(5)

Suffices to deal with $n_i = e^{\sqrt{\log_i \omega} + e^{\sqrt{\log_{i+1} \omega} + e^{\cdot}}}$ for some $i \in \mathbb{N}$.

For $\xi \in \mathbf{No}^{>\mathbb{R}}$, what should $\tilde{\mathfrak{n}}_i(\xi)$ be? The answer comes from a simplicity heuristic (a choice) and Taylor expansions. Rough idea:

- Replace \mathfrak{n}_i with $\mathfrak{n}_i \circ \exp_{\omega}(\omega) = \mathfrak{n}_i \circ \varepsilon_0$ (met the iterates already?). This is simply the simplest number expanding as $e^{\sqrt{\log_i \varepsilon_0} + e^{\sqrt{\log_i \varepsilon_0} + e^{\sqrt$
- It can be shown that $\xi = \varphi + \varepsilon$ where $\varphi \neq 0$ is a truncation of ξ as a series, and there is a simplest monomial $\hat{\mathfrak{n}}_i(\varphi)$ expanding as $e^{\sqrt{\log_i \hat{\mathfrak{c}}_0(\varphi)} + e^{\sqrt{\log_{i+1} \hat{\mathfrak{c}}_0(\varphi)} + e^{\cdot \frac{1}{2}}}$.
- Choosing *i* large enough, one can insure that φ is longest, such that the Taylor expansion of $\hat{\mathfrak{n}}_i(\varphi)$ with radius ε converges formally. We thus set $\hat{\mathfrak{n}}_i(\xi) := \sum_{k \in \mathbb{N}} \frac{\hat{\mathfrak{n}}_i^{(k)}(\varphi)}{k!} \varepsilon^k$.

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

I claim that $\hat{\varepsilon_0}$ is a surreal version of ABEL/KNESER/ECALLE's ω -th iterate E of exp, a realanalytic function on $\mathbb{R}^{\geq 0}$ satisfying $E(t+1) = \exp(E(t))$ for all $t \geq 0$.

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

I claim that $\hat{\varepsilon}_0$ is a surreal version of ABEL/KNESER/ECALLE's ω -th iterate E of exp, a realanalytic function on $\mathbb{R}^{\geq 0}$ satisfying $E(t+1) = \exp(E(t))$ for all $t \geq 0$.

Indeed since $\varepsilon_0 = \{\{\omega, \exp(\omega), \exp(\exp(\omega)), \dots\} \mid \emptyset\}$, the function $\hat{\varepsilon_0}$ should grow faster than all finite iterates of exp. Hardy-type asymptotics give an approximation of

 $\hat{\varepsilon}_0' \approx \hat{\varepsilon}_0 (\log \circ \hat{\varepsilon}_0) (\log \circ \log \circ \hat{\varepsilon}_0) \cdots = T \circ \hat{\varepsilon}_0$ for a transseries T.

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

I claim that $\hat{\varepsilon}_0$ is a surreal version of ABEL/KNESER/ECALLE's ω -th iterate E of exp, a realanalytic function on $\mathbb{R}^{\geq 0}$ satisfying $E(t+1) = \exp(E(t))$ for all $t \geq 0$.

Indeed since $\varepsilon_0 = \{\{\omega, \exp(\omega), \exp(\exp(\omega)), \dots\} \mid \emptyset\}$, the function $\hat{\varepsilon_0}$ should grow faster than all finite iterates of exp. Hardy-type asymptotics give an approximation of

 $\hat{\varepsilon}_0' \approx \hat{\varepsilon}_0 (\log \circ \hat{\varepsilon}_0) (\log \circ \log \circ \hat{\varepsilon}_0) \cdots = T \circ \hat{\varepsilon}_0$ for a transseries T.

Now for $\varphi \in \mathbf{No}^{>\mathbb{R}}$ and $\varepsilon \prec \frac{\hat{\varepsilon_0}(\varphi)}{\hat{\varepsilon_0}'(\varphi)}$, the Taylor expansion of $\hat{\varepsilon_0}$ at φ, ε converges formally.

Did you suggest ε_0 ? Or some nastier ε -number α ? I will explain the ε_0 case and say how to obtain the general one.

I claim that $\hat{\varepsilon_0}$ is a surreal version of ABEL/KNESER/ECALLE's ω -th iterate E of exp, a realanalytic function on $\mathbb{R}^{\geq 0}$ satisfying $E(t+1) = \exp(E(t))$ for all $t \geq 0$.

Indeed since $\varepsilon_0 = \{\{\omega, \exp(\omega), \exp(\exp(\omega)), \dots\} \mid \emptyset\}$, the function $\hat{\varepsilon_0}$ should grow faster than all finite iterates of exp. Hardy-type asymptotics give an approximation of

$$\hat{\varepsilon}_0' \approx \hat{\varepsilon}_0 (\log \circ \hat{\varepsilon}_0) (\log \circ \log \circ \hat{\varepsilon}_0) \cdots = T \circ \hat{\varepsilon}_0$$
 for a transseries T .

Now for $\varphi \in \mathbf{No}^{>\mathbb{R}}$ and $\varepsilon \prec \frac{\hat{\varepsilon_0}(\varphi)}{\hat{\varepsilon_0}'(\varphi)}$, the Taylor expansion of $\hat{\varepsilon_0}$ at φ, ε converges formally.

So if we can define $\hat{\varepsilon_0}$ at sufficiently simple φ 's, then we can extend the definition to all $\varphi + \varepsilon$ for sufficiently small ε , by

$$\hat{\varepsilon}_0(\varphi + \varepsilon) := \sum_{k \in \mathbb{N}} \frac{\hat{\varepsilon}_0^{(k)}(\varphi)}{k!} \varepsilon^k.$$

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega+1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi+1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>\mathbb{R}}$.

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega+1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi+1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>\mathbb{R}}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>\mathbb{R}}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega+1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi+1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>\mathbb{R}}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>\mathbb{R}}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

If that $\xi - n$ has a strict (hence simpler) truncation φ with $\xi - n - \varphi < \frac{\hat{\varepsilon}_0(\varphi)}{\hat{\varepsilon}_0'(\varphi)}$ for some $n \in \mathbb{N}$, then we define $\hat{\varepsilon}_0(\xi)$ via Taylor expansions.

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega+1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi+1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>\mathbb{R}}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>\mathbb{R}}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

If that $\xi - n$ has a strict (hence simpler) truncation φ with $\xi - n - \varphi < \frac{\hat{\varepsilon}_0(\varphi)}{\hat{\varepsilon}_0'(\varphi)}$ for some $n \in \mathbb{N}$, then we define $\hat{\varepsilon}_0(\xi)$ via Taylor expansions.

So it suffices to define $\hat{\varepsilon_0}$ on the class \mathbf{Tr} of numbers that do not have such truncations. For $\varphi, \psi \in \mathbf{Tr}, \varphi < \psi$, monotonicity of $\hat{\varepsilon_0}$ entails that $\mathcal{E}_n^{\pm}(\hat{\varepsilon_0}(\varphi)) < \hat{\varepsilon_0}(\psi)$ where

$$\forall \zeta \in \mathbf{No}^{>\mathbb{R}}, \mathcal{E}_n^{\pm}(\zeta) = \exp^{\circ n}(\log^{\circ n}(\zeta) \pm 1)$$

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega+1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi+1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>\mathbb{R}}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>\mathbb{R}}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

If that $\xi - n$ has a strict (hence simpler) truncation φ with $\xi - n - \varphi < \frac{\hat{\varepsilon}_0(\varphi)}{\hat{\varepsilon}_0'(\varphi)}$ for some $n \in \mathbb{N}$, then we define $\hat{\varepsilon}_0(\xi)$ via Taylor expansions.

So it suffices to define $\hat{\varepsilon_0}$ on the class \mathbf{Tr} of numbers that do not have such truncations. For $\varphi, \psi \in \mathbf{Tr}, \varphi < \psi$, monotonicity of $\hat{\varepsilon_0}$ entails that $\mathcal{E}_n^{\pm}(\hat{\varepsilon_0}(\varphi)) < \hat{\varepsilon_0}(\psi)$ where

$$\forall \zeta \in \mathbf{No}^{>\mathbb{R}}, \mathcal{E}_n^{\pm}(\zeta) = \exp^{\circ n}(\log^{\circ n}(\zeta) \pm 1)$$

This gives an inductive definition, if φ is the simplest element of **Tr** with $L < \varphi < R$, $L, R \subseteq$ **Tr**:

$$\hat{\varepsilon_0}(\varphi) = \{ \exp^{\circ n}(\varphi), \mathcal{E}_n^+(\hat{\varepsilon_0}(l)) : n \in \mathbb{N} \land l \in L \} \mid \{ \mathcal{E}_n^-(\hat{\varepsilon_0}(r)) : n \in \mathbb{N} \land r \in R \}.$$

Some heuristics suggest that the simplest value for $\hat{\varepsilon}_0(\omega+1)$ is $\exp(\hat{\varepsilon}_0(\omega))$. Thus we should have $\hat{\varepsilon}_0(\xi+1) = \exp(\hat{\varepsilon}_0(\xi))$ for all $\xi \in \mathbf{No}^{>\mathbb{R}}$.

To define $\hat{\varepsilon}_0$ at a ξ , it suffices to define it at $\xi - n$ for some $n \in \mathbb{N}$ and then take the *n*-fold iterated exponential of the result. Fix $\xi \in \mathbf{No}^{>\mathbb{R}}$ and suppose $\hat{\varepsilon}_0(\zeta)$ is defined for simpler ζ .

If that $\xi - n$ has a strict (hence simpler) truncation φ with $\xi - n - \varphi < \frac{\hat{\varepsilon}_0(\varphi)}{\hat{\varepsilon}_0'(\varphi)}$ for some $n \in \mathbb{N}$, then we define $\hat{\varepsilon}_0(\xi)$ via Taylor expansions.

So it suffices to define $\hat{\varepsilon_0}$ on the class \mathbf{Tr} of numbers that do not have such truncations. For $\varphi, \psi \in \mathbf{Tr}, \varphi < \psi$, monotonicity of $\hat{\varepsilon_0}$ entails that $\mathcal{E}_n^{\pm}(\hat{\varepsilon_0}(\varphi)) < \hat{\varepsilon_0}(\psi)$ where

$$\forall \zeta \in \mathbf{No}^{>\mathbb{R}}, \mathcal{E}_n^{\pm}(\zeta) = \exp^{\circ n}(\log^{\circ n}(\zeta) \pm 1)$$

This gives an inductive definition, if φ is the simplest element of **Tr** with $L < \varphi < R$, $L, R \subseteq$ **Tr**:

$$\hat{\varepsilon_0}(\varphi) = \{ \exp^{\circ n}(\varphi), \mathcal{E}_n^+(\hat{\varepsilon_0}(l)) : n \in \mathbb{N} \land l \in L \} \mid \{ \mathcal{E}_n^-(\hat{\varepsilon_0}(r)) : n \in \mathbb{N} \land r \in R \}.$$

General case of $\exp_{\omega^{\mu}}$: proceed inductively, replacing $\{\exp^{\circ n} \in \mathbb{N}\}$ by $\{\exp^{\circ n}_{\omega^{\eta}}: n \in \mathbb{N} \land \eta < \mu\}$.

I win the game. Thanks for playing along!

Proof of VAN DER HOEVEN'S CONJECTURE. Proof by game. If the conjecture were false, then 10 minutes should be enough, to a room full of smart people, to disprove it. But they just lost the very fair game. Therefore the conjecture is true.

Congrats I guess

You win!

Thanks for playing along (and ruining my project; saves time)!