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VAN DER HOEVEN's conjecture 3/15

In fact, the class No of all numbers should be a differential field of surreal valued germs:

Conjecture. There are a derivation

@ :No¡!No

and a composition law

� :No�No>R¡!No

such that for each a2No, the function â :No>R¡!No behaves like a germ in a Hardy field.

For instance, each â should be strictly monotonous and differentiable with â0=@(a)d , we should
have Taylor expansions, and for fixed � 2No>R, the function a 7!a� � should be an endomor-
phism of (No;+; �; <).
I have found a proof of that conjecture, which the margins of this short talks
are too narrow to contain.

Let's play a game instead.
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For instance, each â should be strictly monotonous and differentiable with â0=@(a)d , we should
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Cut to the chase 4/15

Rules of the game:

� You �give� me a number a, such that you think the composition law � could not be defined
on fag�No>R.

You may give me a cut, an algebraic expression, some number you know how to present
because of your own knowledge of surreal numbers1.

� My goal is to convince you that I know what the function â :No>R¡!No ; � 7! a � �
should be.

If you win, I'll buy you a drink before the end of times.

�I have a slide for that one�

cui dec flip ite iwin nop them ulose vrai

back.

1. Caveat: I may not be able to turn a sign sequence into the way I represent numbers on the spot, so don't be
too mean with that.
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Reals and small ordinals 5/15

vrai. back

The ordered field of surreal numbers contains a canonical copy of the ordered field of real
numbers:

� surreal numbers fL j Rg where L;R are hereditarily finite are dyadic rationals

� If (L;R) is a Dedekind cut of dyadic numbers, then fL j Rg is the corresponding real.

The law a 7! a � � should be R-linear, so r̂ should be the constant function � 7! r for all
r2R�No.

No also contains the ordered semi-ring On of ordinal numbers under the commutative nat-
ural/Hessenberg arithmetic.

� Ordinal numbers are surreal numbers of the form fL j ?g.
� each �2On is iductively identified with ff� : � <�g j ?g.
For instance != fN j ?g is the simplest positive infinite number. It should correspond to the
simplest germ that tends to +1, i.e. to the identity function !̂= � 7! �.

So elements of R(!) should act as the corresponding rational functions. What else?



Reals and small ordinals 5/15

vrai. back

The ordered field of surreal numbers contains a canonical copy of the ordered field of real
numbers:

� surreal numbers fL j Rg where L;R are hereditarily finite are dyadic rationals

� If (L;R) is a Dedekind cut of dyadic numbers, then fL j Rg is the corresponding real.

The law a 7! a � � should be R-linear, so r̂ should be the constant function � 7! r for all
r2R�No.

No also contains the ordered semi-ring On of ordinal numbers under the commutative nat-
ural/Hessenberg arithmetic.

� Ordinal numbers are surreal numbers of the form fL j ?g.
� each �2On is iductively identified with ff� : � <�g j ?g.
For instance != fN j ?g is the simplest positive infinite number. It should correspond to the
simplest germ that tends to +1, i.e. to the identity function !̂= � 7! �.

So elements of R(!) should act as the corresponding rational functions. What else?



Reals and small ordinals 5/15

vrai. back

The ordered field of surreal numbers contains a canonical copy of the ordered field of real
numbers:

� surreal numbers fL j Rg where L;R are hereditarily finite are dyadic rationals

� If (L;R) is a Dedekind cut of dyadic numbers, then fL j Rg is the corresponding real.

The law a 7! a � � should be R-linear, so r̂ should be the constant function � 7! r for all
r2R�No.

No also contains the ordered semi-ring On of ordinal numbers under the commutative nat-
ural/Hessenberg arithmetic.

� Ordinal numbers are surreal numbers of the form fL j ?g.
� each �2On is iductively identified with ff� : � <�g j ?g.
For instance != fN j ?g is the simplest positive infinite number. It should correspond to the
simplest germ that tends to +1, i.e. to the identity function !̂= � 7! �.

So elements of R(!) should act as the corresponding rational functions. What else?



Reals and small ordinals 5/15

vrai. back

The ordered field of surreal numbers contains a canonical copy of the ordered field of real
numbers:

� surreal numbers fL j Rg where L;R are hereditarily finite are dyadic rationals

� If (L;R) is a Dedekind cut of dyadic numbers, then fL j Rg is the corresponding real.

The law a 7! a � � should be R-linear, so r̂ should be the constant function � 7! r for all
r2R�No.

No also contains the ordered semi-ring On of ordinal numbers under the commutative nat-
ural/Hessenberg arithmetic.

� Ordinal numbers are surreal numbers of the form fL j ?g.
� each �2On is iductively identified with ff� : � <�g j ?g.
For instance != fN j ?g is the simplest positive infinite number. It should correspond to the
simplest germ that tends to +1, i.e. to the identity function !̂= � 7! �.

So elements of R(!) should act as the corresponding rational functions. What else?



Reals and small ordinals 5/15

vrai. back

The ordered field of surreal numbers contains a canonical copy of the ordered field of real
numbers:

� surreal numbers fL j Rg where L;R are hereditarily finite are dyadic rationals

� If (L;R) is a Dedekind cut of dyadic numbers, then fL j Rg is the corresponding real.

The law a 7! a � � should be R-linear, so r̂ should be the constant function � 7! r for all
r2R�No.

No also contains the ordered semi-ring On of ordinal numbers under the commutative nat-
ural/Hessenberg arithmetic.

� Ordinal numbers are surreal numbers of the form fL j ?g.
� each �2On is iductively identified with ff� : � <�g j ?g.
For instance != fN j ?g is the simplest positive infinite number. It should correspond to the
simplest germ that tends to +1, i.e. to the identity function !̂= � 7! �.

So elements of R(!) should act as the corresponding rational functions. What else?



Ordinals 6/15

them. back

Of course.

We already know how to deal with ordinals <!!, since they lie in R(!). For �>!!, I have an
inductive method:

� If � is not additively indecomposable, then its germ �̂ is the sum of germs of its (Cantor
normal form) summands.

� If � is additively indecomposable ordinal but not multiplicatively indecomposable, then �̂ is
the product of germs of its factors.

� If �=!!�>! is not an "-number, then I express �̂ as exp �!�b . Know what exp is? nope.

� If � is an "-number, then there is some ordinal � such that � is an fixed point of the !-base
exponentiation of (higher order) � but not �+1.

Suppose that � is the �-th such fixed point. We then5 define � using �̂ and the !�-th
iterate exp!� of the exponential . . .

5. the way to do so is complicated enough that I don't want to expand on this here. If � is a non-zero limit,
then this is simply �̂= exp!� � (!u �) where !u � is the ordinal sum of ! and �.
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dec. back

Certain positive numbers m called monomials are additively indecomposable into simpler terms:
they are the simplest elements of their Archimedean class

�
b> 0 :9n2N>0;

1

n
m<b<nm

	
.

If (m
)
<� is a strictly decreasing sequence of monomials and (r
)
<�2R�, then one defines
inductively the sum

X

<�

r
m
=
(X

<�

r
m
+ qm� : q 2 (¡1; r�) j
X

<�

r
m
+ qm� : q 2 (r�;+1)
)
:

Theorem. [Conway, '76] Every surreal number can be expressed uniquely in such a way. So
numbers are identified with functions Monomials3m 7¡! r 2R whose support is anti-well-
ordered.

Claim: I can define each m
b in so that for all � 2No>R, the following number is well-defined:

â(�) := n 7¡!
X

<�

r
m
b (�)(n):
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Logarithm 8/15

flip. back

Have you stumbled upon !
1
! =

n
N j

n
!
1
n :n2N>0

oo
? You must have a retorse mind.

Or are you curious about the inverse number of !!? What a pleasant, curious and onpen person.

Anyway, this ought to be the simplest function that tends to +1 slower than all positive power
functions: a logaritm?

Unfotunately, I don't know how to justify that the simplest choice for ! /1 ! is the inverse of exp,
nor do I know a genetic equation for log. But yes, log= expinv.

This function was defined by Gonshor ('86).
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nop. back

We have !!= f!N j ?g. What is the simplest strictly increasing function that grows faster
than all polynomials?

f(fL j Rg) = ffL j RgN; f(L) j f(R)g:

. . .but also has Taylor expansions and behaves like a germ in a Hardy field?

Hardy-type asymptotics entail that the simplest choice for !!b (�+ �) is !!b (�)!!b (�).
Gonshor ('86) defined the exponential function as follows, for �= fL j Rg

exp(�)=

8<:exp(l)
X
i6n

(�¡ l)i
i!

j exp(r)
9=;

where l; r; i range in L, R and N respectively.
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cui. back

You seem to have found a nested number. Well done! those are the worst.

Each monomial m 2No (do you know about the Hahn series deccomposition yet?) can be
written as m=e' for '= logm a surreal number of a special type.

If one is lucky, the number ' is �simpler� in some sense than m, so I can claim inductively that
I know what '̂ is. And then m̂= exp � '̂. With a bit less luck, going through monomials in '
and the inductively so, we end up finding only simpler numbers after some time.

But that may not happen. One may not reach any simpler number.

Theorem. [BERARDUCCI-MANTOVA, 2017] If the process continues indefinitely, then at some
stage, problematic monomials n thus appearing have the form

n=e'1�e
'2�e

'3�e
� ��

for some strictly simpler '1; : : : ; 'n; : : : .

With van der Hoeven, we extended this to all numbers using hyperexponentials and their inverses.
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So how do I deal with nested monomials? �An� example is

n=e !
p

+e
log!

p
+e

loglog!
p

+e
� ��

(1)

Suffices to deal with ni=e logi!
p

+e
logi+1!

q
+e

� ��

for some i2N.

For � 2No>R, what should ni~(�) be? The answer comes from a simplicity heuristic (a choice)
and Taylor expansions. Rough idea:

� Replace ni with ni�exp!(!)=ni�"0 (met the iterates already?). This is simply the simplest

number expanding as e logi"0
p

+e
logi+1"0

q
+e

� ��

. Also replace � with log!(�).

� It can be shown that �= '+ " where '=/ 0 is a truncation of � as a series, and there is a

simplest monomial nî(') expanding as e logi"0̂(')
p

+e
logi+1"0̂(')

q
+e

� ��

.

� Choosing i large enough, one can insure that ' is longest, such that the Taylor expansion

of nî(') with radius " converges formally. We thus set nî(�) :=
P

k2N
nî(k)(')

k!
"k.



Nested cuts II 11/15

So how do I deal with nested monomials? �An� example is

n=e !
p

+e
log!

p
+e

loglog!
p

+e
� ��

(2)

Suffices to deal with ni=e logi!
p

+e
logi+1!

q
+e

� ��

for some i2N.

For � 2No>R, what should ni~(�) be? The answer comes from a simplicity heuristic (a choice)
and Taylor expansions. Rough idea:

� Replace ni with ni�exp!(!)=ni�"0 (met the iterates already?). This is simply the simplest

number expanding as e logi"0
p

+e
logi+1"0

q
+e

� ��

. Also replace � with log!(�).

� It can be shown that �= '+ " where '=/ 0 is a truncation of � as a series, and there is a
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ite. back

Did you suggest "0? Or some nastier "-number �? I will explain the "0 case and say how to
obtain the general one.

I claim that "0̂ is a surreal version of ABEL/KNESER/ECALLE's !-th iterate E of exp, a real-
analytic function on R>0 satisfying E(t+1)= exp(E(t)) for all t> 0.

Indeed since "0=ff!; exp(!); exp(exp(!)); : : :g j ?g, the function "0̂ should grow faster than
all finite iterates of exp. Hardy-type asymptotics give an approximation of

"0̂0� "0̂ (log � "0̂) (log � log � "0̂) � � �=T � "0̂ for a transseries T :

Now for '2No>R and "� "0̂(')

"0̂0(')
, the Taylor expansion of "0̂ at '; " converges formally.

So if we can define "0̂ at sufficiently simple ''s, then we can extend the definition to all '+ "
for sufficiently small ", by

"0̂('+ ") :=
X
k2N

"0̂(k)(')
k!

"k:
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Some heuristics suggest that the simplest value for "0̂(!+1) is exp("0̂(!)). Thus we should
have "0̂(�+1)= exp("0̂(�)) for all � 2No>R.

To define "̂0 at a �, it suffices to define it at � ¡ n for some n2N and then take the n-fold
iterated exponential of the result. Fix � 2No>R and suppose "0̂(�) is defined for simpler �.

If that �¡n has a strict (hence simpler) truncation ' with �¡n¡'< "0̂(')

"0̂0(')
for some n2N,

then we define "0̂(�) via Taylor expansions.

So it suffices to define "0̂ on the class Tr of numbers that do not have such truncations. For
';  2Tr; '<  , monotonicity of "0̂ entails that En�("0̂('))<"0̂( ) where

8� 2No>R; En�(�)= exp�n(log�n(�)� 1)

This gives an inductive definition, if ' is the simplest element of Tr with L<'<R, L;R�Tr:

"0̂(')= fexp�n('); En+("0̂(l)) :n2N^ l2Lg j fEn¡("0̂(r)) :n2N^ r 2Rg:

General case of exp!�: proceed inductively, replacing fexp�n2Ng by fexp!��n :n2N^ �<�g.
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"0̂0(')
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iwin.

I win the game. Thanks for playing along!

Proof of VAN DER HOEVEN'S CONJECTURE. Proof by game. If the conjecture were false, then
10 minutes should be enough, to a room full of smart people, to disprove it. But they just lost
the very fair game. Therefore the conjecture is true. �
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ulose.

You win!

Thanks for playing along (and ruining my project; saves time)!
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