

Paradoxical sets and the Axiom of Choice

Azul Lihuen Fatalini Advisor: Prof. Ralf Schindler

living.knowledge

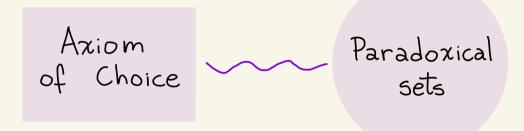
Set theory

How does constructing models look like?

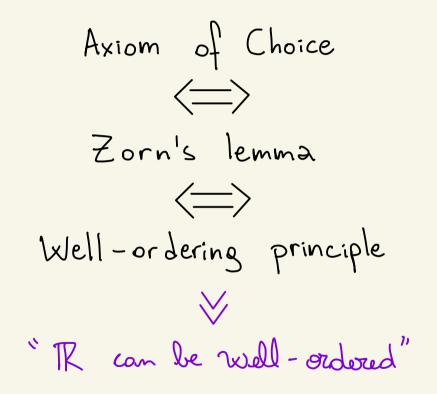
Set theory

$$(M, \mathbb{P}, g \in \mathbb{P}) \longrightarrow Forcing \longrightarrow M[g]$$

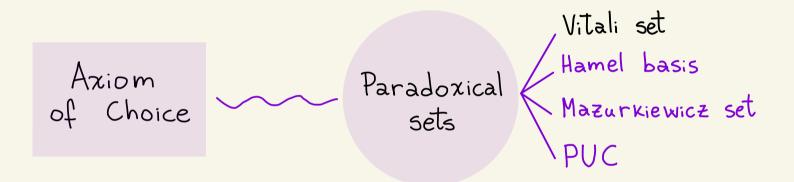
Context

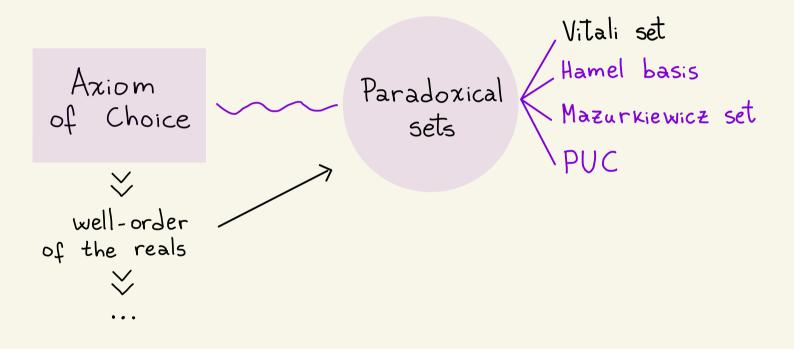


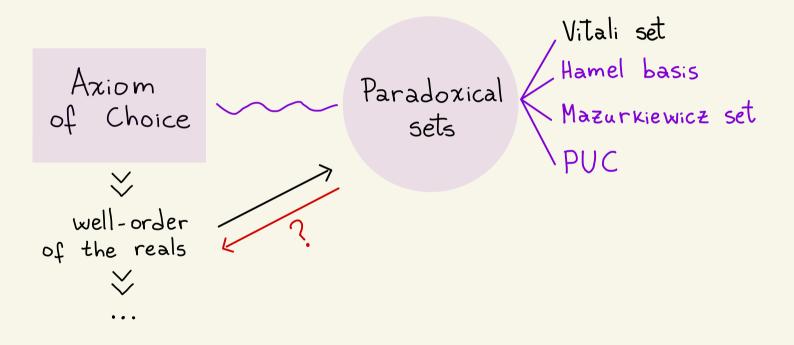
Axiom of Choice



•
$$p \in \mathbb{R}^n$$
 $n = 1, 2, 3$.
[p satisfies some counterintuitive property.]
The existence of such a p involves Axiom of Choice

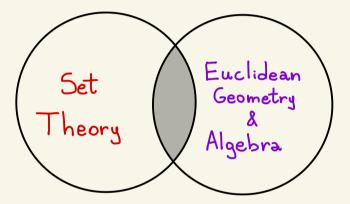






Contribution

Negative answer \rightarrow Model of ZF + \neg C + \exists P



Contribution

Negative answer \rightarrow Model of $ZF + \neg C + \exists P$ Set Theory Algebra Strategy: Construct a model (of ZF+7C) which contains a nice structure of inner models satisfying AC. · P will be a limit of the portial porodoxical sets.

Recent results

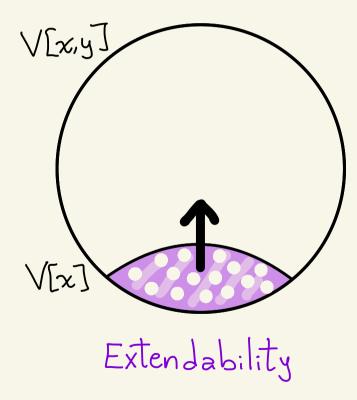
Models of ZF + 7 C + 3 P

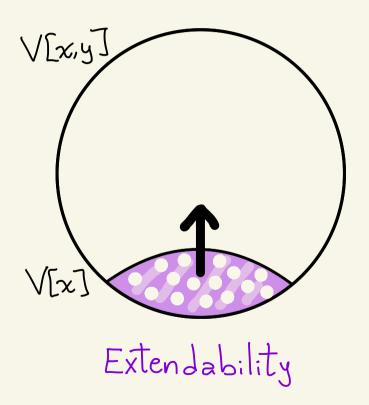
Recent results

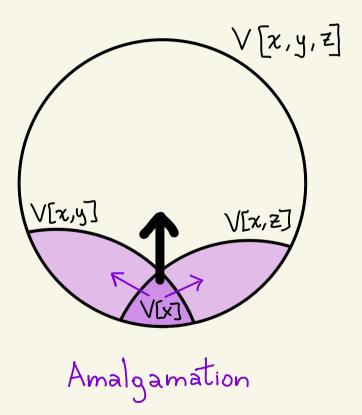
Models of ZF + 7 C + 3 P

* Models of ZF+DC+-1/2/0(R)+

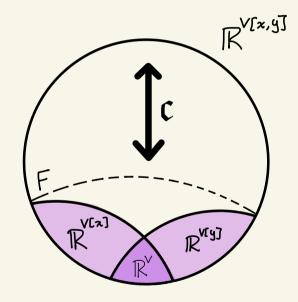
- Hamel basis [5Y]
- Hamel basis + ... [B'CSWY]
- Mazurkiewicz set [B5]
- Partition of R³ in unit circles [F]





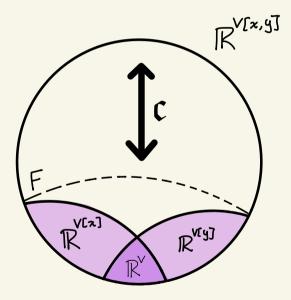


Algebra



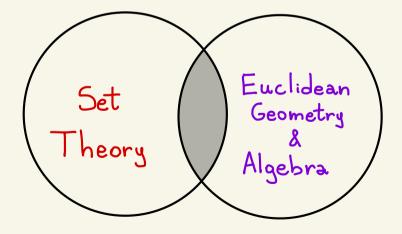
Algebra

Theorem (F., Schindler; ~2024) Let V be a model of ZFC and let 5 be a finite set of mutually generic Cohen reals over V. Consider F the minimum field containing $\bigcup_{T \subseteq S} \mathbb{R}^{V[T]}$. ITI=151-1 Then the transcendence degree of R over F is C.



Summary

Recipes
$$\begin{cases} ZF + DC + \neg WO(R) + \Psi(P) \\ ZF + DC + \neg U(\omega) + \Psi(P) \\ Hamel basis \end{cases}$$



AZUL LIHUEN FATALINI

Paradoxical sets and the Axiom of Choice

