
On the consistency of circuit lower bounds
for nondeterministic time

Moritz Müller

Universität Passau

joint work with Albert Atserias and Sam Buss

On the consistency of circuit lower bounds
for nondeterministic time

Moritz Müller

Universität Passau

joint work with Albert Atserias and Sam Buss

Main result NEXP 6⊆ P/poly is consistent with V0
2.

Cook’s PV

Language PV: < plus symbols for polynomial time functions

Theory ∀PV (DeMillo, Lipton 1979)

universal sentences true in the standard model

Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

Cook’s PV

Language PV: < plus symbols for polynomial time functions

Theory ∀PV (DeMillo, Lipton 1979)

universal sentences true in the standard model

Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

• PV eliminates sharply bounded quantifiers ∃y<|t(x̄)|, ∀y<|t(x̄)|

• PV proves induction for quantifier free formulas

• sharply bounded formulas define precisely the sets in P

• Σb
1-formulas define precisely the sets in NP

i.e. form ∃y<t ψ for ψ sharply bounded.

Cook’s PV

Language PV: < plus symbols for polynomial time functions

Theory ∀PV (DeMillo, Lipton 1979)

universal sentences true in the standard model

Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

Proposition

If PV ` ∃y ϕ(y, x̄) and ϕ(y, x̄) is quantifier free,

then PV ` ϕ(f(x̄), x̄) for some f(x̄) ∈ PV.

Cook’s PV

Language PV: < plus symbols for polynomial time functions

Theory ∀PV (DeMillo, Lipton 1979)

universal sentences true in the standard model

Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

Proposition

If PV ` ∃y ϕ(y, x̄) and ϕ(y, x̄) is quantifier free,

then PV ` ϕ(f(x̄), x̄) for some f(x̄) ∈ PV.

Intuition PV formalizes polynomial time reasoning

Cook 1975

if one believes that feasibly constructive arguments can be formalized
in PV, then it is worthwhile seeing which parts of mathematics can
be so formalized.

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · · ⊆ T2

PV quantifier-free induction
P induction

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · · ⊆ T2

PV quantifier-free induction
P induction

S1
2 Σb

1 length induction: ϕ(0) ∧ ∀y(ϕ(y)→ ϕ(y+1))→ ϕ(|x|)
NP induction for small numbers
Σb

1-definable functions: P

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · · ⊆ T2

PV quantifier-free induction
P induction

S1
2 Σb

1 length induction: ϕ(0) ∧ ∀y(ϕ(y)→ ϕ(y+1))→ ϕ(|x|)
NP induction for small numbers
Σb

1-definable functions: P

T1
2 Σb

1 induction
NP induction
Σb

1-definable functions: PLS

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · · ⊆ T2

PV quantifier-free induction
P induction

S1
2 Σb

1 length induction: ϕ(0) ∧ ∀y(ϕ(y)→ ϕ(y+1))→ ϕ(|x|)
NP induction for small numbers
Σb

1-definable functions: P

T1
2 Σb

1 induction
NP induction
Σb

1-definable functions: PLS

T2 bounded induction
PH induction

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · · ⊆ T2

T2
2 formalizes

Furst-Saxe-Sipser on AC0

Razborov-Smolensky on AC0[p] (almost)
Razborov on monotone circuits

Kraj́ıček, Oliveira 2017

PV or its mild extensions seem to formalize most of contemporary
complexity theory

Formalizations

• Direct formalization for a Σb
1-formula ϕ(x): ∃N 1 < n = |N |

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x))

Formalizations

• Direct formalization for a Σb
1-formula ϕ(x): ∃N 1 < n = |N |

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x))

• Direct formalization for an NP-machine M :

αcM := ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

Formalizations

• Direct formalization for a Σb
1-formula ϕ(x): ∃N 1 < n = |N |

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x))

• Direct formalization for an NP-machine M :

αcM := ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

• These are ∀Σb
3. Can get a ∀Σb

2-formula

βcM := ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀y<2n

d

(C(x) = 0→ ¬ “y is an accepting computation of M on x”) ∧
(C(x) = 1→ “D(x) is an accepting computation of M on x”)

“NP 6⊆ P/poly” :=
{
¬βcM0

| c ∈ N
}

for a universal NP-machine M0.

The consistency question

αcM = ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

βcM = ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀y<2n

d

(C(x) = 0→ ¬ “y is an accepting computation of M on x”) ∧
(C(x) = 1→ “D(x) is an accepting computation of M on x”)

Central question Is “NP 6⊆ P/poly” consistent with PV?

Kraj́ıček 2019

The consistency counts towards the validity of H: it is true in a model
of the theory, a structure very close to the standard model from the
point of view of complexity theory.

Earlier consistency results

αcM = ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

βcM = ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀y<2n

d

(C(x) = 0→ ¬ “y is an accepting computation of M on x”) ∧
(C(x) = 1→ “D(x) is an accepting computation of M on x”)

Cook, Kraj́ıček 2007

“NP 6⊆ P/poly” is consistent with S1
2 if PH 6= PNP

tt .

“NP 6⊆ P/poly” is consistent with S2
2 if PH 6= PNP.

Earlier consistency results

αcM = ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

βcM = ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀y<2n

d

(C(x) = 0→ ¬ “y is an accepting computation of M on x”) ∧
(C(x) = 1→ “D(x) is an accepting computation of M on x”)

Cook, Kraj́ıček 2007

“NP 6⊆ P/poly” is consistent with S1
2 if PH 6= PNP

tt .

“NP 6⊆ P/poly” is consistent with S2
2 if PH 6= PNP.

Bydžovský, Kraj́ıček, Oliveira 2020 Let c ∈ N.

¬αcM is consistent with S1
2 for some NP-machine M .

¬αcM is consistent with S2
2 for some PNP-machine M .

Two sorted theories

Add set sort variables X,Y, . . . and atoms x ∈ X.

Σ1,b
0 : bounded number sort quantifiers, no set sort quantifiers.

Σ1,b
1 : form ∃Xψ for ψ ∈ Σ1,b

0 . Define the problems in NEXP.

PV ⊆ S1
2 ⊆ T1

2 ⊆ · · ·T2 ⊆ V0
2 ⊆ V1

2

T2 + Σ1,b
0 comprehension

∃Y ∀y (y ∈ Y ↔ y ≤ z ∧ ϕ(X̄, x̄, y))

Set boundedness ∃y ∀x (x ∈ X → x ≤ y)

Extensionality ∀x(x ∈ X ↔ x ∈ Y)→ X = Y

Same number sort consequences as T2

Two sorted theories

Add set sort variables X,Y, . . . and atoms x ∈ X.

Σ1,b
0 : bounded number sort quantifiers, no set sort quantifiers.

Σ1,b
1 : form ∃Xψ for ψ ∈ Σ1,b

0 . Define the problems in NEXP.

PV ⊆ S1
2 ⊆ T1

2 ⊆ · · ·T2 ⊆ V0
2 ⊆ V1

2

T2 + Σ1,b
1 comprehension

∃Y ∀y (y ∈ Y ↔ y ≤ z ∧ ϕ(X̄, x̄, y))

Set boundedness ∃y ∀x (x ∈ X → x ≤ y)

Extensionality ∀x(x ∈ X ↔ x ∈ Y)→ X = Y

Σ1,b
1 -definable functions: EXP.

Core idea

Direct formalization:

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x)).

Proposition

{¬αcϕ | c ∈ N} is consistent with V0
2 for some Σ1,b

1 -formula ϕ(x).

Core idea

Direct formalization:

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x)).

Proposition

{¬αcϕ | c ∈ N} is consistent with V0
2 for some strict Σ1,b

1 -formula ϕ(x).

Proof sketch Let PHP(x) be

¬ ∃X “X codes a bijection from x+ 1 onto x”.

V0
2 proves PHP(x) is inductive: PHP(0) ∧ (PHP(u)→ PHP(u+ 1)).

Assume V0
2 ` αc¬PHP.

Then PHP(u) is equivalent to C(u) = 0 for some circuit C.

Quantifier free induction gives PHP(x). Contradiction. �

Core idea

Direct formalization:

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x)).

Proposition

{¬αcϕ | c ∈ N} is consistent with V0
2 for some strict Σ1,b

1 -formula ϕ(x).

Faithful?

is there an NEXP-machine not simulated by small circuits in this model?

αcM := ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃Y “Y is an accepting computation of M on x”)

Core idea

Direct formalization:

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x)).

Proposition

{¬αcϕ | c ∈ N} is consistent with V0
2 for some strict Σ1,b

1 -formula ϕ(x).

Faithful?

is there an NEXP-machine not simulated by small circuits in this model?

αcM := ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃Y “Y is an accepting computation of M on x”)

Surprising?

αcϕ has existential set quantifiers. Intuitively, V0
2 only knows trivial sets.

Want

Set-universal formalization for machines.

Easy witness lemma

βcM := ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M on x”)

Easy witness lemma

βcM := ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M on x”)

Impagliazzo, Kabanets, Wigderson 2002

The following are equivalent

NEXP 6⊆ P/poly

{¬αcϕ | c ∈ N} is true for some Σ1,b
1 -formula ϕ(x)

{¬αcM | c ∈ N} is true for some for some NEXP-machine M

{¬αcM0
| c ∈ N} is true

{¬βcM | c ∈ N} is true for some NEXP-machine M

{¬βcM0
| c ∈ N} is true

Main result

βcM := ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M on x”)

Theorem

V0
2 is consistent with

{¬αcϕ | c ∈ N} for some Σ1,b
1 -formula ϕ(x)

{¬αcM | c ∈ N} for some NEXP-machine M

{¬αcM0
| c ∈ N}

{¬βcM | c ∈ N} for some NEXP-machine M

{¬βcM0
| c ∈ N} =: “NEXP 6⊆ P/poly”

Proof sketch For all c, ϕ,M there are d, e,M∗ such that V0
2 proves:

(βcM0
→ βdM) (βdM → αdM) (αdM ∗ → αeϕ) . . . �

Slightly superpolynomial time

Theorem

“NTIME[nO(log log logn)] 6⊆ P/poly” is consistent with V0
2.

• Set-universal formalization based on Murray-Williams 2018.

• Almost settles the central question on the consistency of “NP 6⊆ P/poly”.

General consistency and magnification

Lemma Let (M,X) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

General consistency and magnification

Lemma Let (M,X) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Proof idea

Consider a weak theory plus βcM0

βcM0
implies that many sets are coded by small circuits

The weak theory can quantify over and reason with these circuits

The weak theory can implicitly reason with many sets

The weak theory can simulate a strong theory

General consistency and magnification

Lemma Let (M,X) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Proof sketch

Y := sets represented by circuits in M

Then (M,Y) |= βcM0
since βcM0

is set-universal.

And (M,Y) |= S1
2(α).

Suffices to show the existence of sets defined by ∃X ψ(x, ȳ,X, Ȳ) for ψ ∈ Πb
1

Key: set parameters Ȳ from Y can be replaced by circuits: number sort!

Then βcM0
implies the set is given by a circuit. �

General consistency and magnification

Lemma Let (M,X) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Theorem

Let S1
2(α) ⊆ T. Assume T does not prove all number-sort consequences of V1

2.

Then “NEXP 6⊆ P/poly” is consistent with T.

General consistency and magnification

Lemma Let (M,X) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Theorem

Let S1
2(α) ⊆ T. Assume T does not prove all number-sort consequences of V1

2.

Then “NEXP 6⊆ P/poly” is consistent with T.

Magnification

If S1
2(α) 6` “NEXP 6⊆ P/poly”, then V1

2 6` “NEXP 6⊆ P/poly”.

Hope to complete Razborov’s program.

Question: deterministic computations ?

Open Is “EXP 6⊆ P/poly” consistent with V0
2 ?

Formalization

Let M1 be a suitable EXP-universal machine.

βcM1
:= ∀n∈Log>1 ∃C,D<2n

c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M1 on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M1 on x”)

Question: deterministic computations ?

Open Is “EXP 6⊆ P/poly” consistent with V0
2 ?

Formalization

Let M1 be a suitable EXP-universal machine.

βcM1
:= ∀n∈Log>1 ∃C,D<2n

c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M1 on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M1 on x”)

γcM1
:= ∀n∈Log>1 ∃D<2n

c
∀x<2n number sort

“tt(Dx) is a halting computation of M1 on x” ∀Σb
2

Question: deterministic computations ?

Open Is “EXP 6⊆ P/poly” consistent with V0
2 ?

Formalization

Let M1 be a suitable EXP-universal machine.

βcM1
:= ∀n∈Log>1 ∃C,D<2n

c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M1 on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M1 on x”)

γcM1
:= ∀n∈Log>1 ∃D<2n

c
∀x<2n number sort

“tt(Dx) is a halting computation of M1 on x” ∀Σb
2

Theorem The following are equivalent for T ⊇ T1
2(α):{

¬βcM1
| c ∈ N

}
is consistent with T{

¬γcM1
| c ∈ N

}
is consistent with T

