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Lorentzian metrics: abstractly

Let M be smooth 4-dimensional manifold. A Lorentzian metric on M is

“a symmetric and (1, 3)-signature section g of the bundle (TM ⊗ TM)∗ →M”

g(~V , ~W )p := the “inner product” of ~V , ~W at p ∈M
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Let M be smooth 4-dimensional manifold. A Lorentzian metric on M is

“a symmetric and (1, 3)-signature section g of the bundle (TM ⊗ TM)∗ →M”

g(~V , ~W )p := the “inner product” of ~V , ~W at p ∈M

R. Penrose, “The Road to Reality”
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Lorentzian metrics: concretely

A Lorentzian metric on R4 is given by a smooth map gµν : R4 → R4×4

(x0, x1, x2, x3) 7→


g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33


with gµν being a symmetric, (−,+,+,+)-signature matrix. We have

g = gµν dx
µdxν

Example

If ηµν :=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , then η = −dt2 + dx2 + dy2 + dz2
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Einstein field equations

By a spacetime we mean a Lorentzian metric gµν : R4 → R4×4, satisfying:

Rµν −
1

2
gµνR =

8πG

c4
Tµν

for some “physically relevant” Stress-Energy tensor Tµν .

gµν  Rρµσν  Rµν  R

Compare to Poisson’s equation for Newton’s law of gravity:

∇2ϕ = 4πGρ
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Example

gµν := 1/(2ω2)
[
− (dt+ exdy)2 + dx2 + 1/2e2xdy2 + dz2

]
Tµν = “rotating dust” + “negative cosmological constant”

Figure. Nḿeti, Madarász, Andréka, Andai (after Hawking, Ellis)

“Is the universe rotating yet?” K. Gödel
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Question. Do gµν and g̃ρσ represent different “geometries”?

gµν : =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



g̃ρσ : =


−1 − cos(x1) 0 0

− cos(x1) 1− cos2(x1) 2x2 0
0 2x2 4x2

2 + 1 −1
0 0 −1 2



We say that gµν and g̃ρσ are diffeomorphic and write gµν 'diff g̃ρσ if
there exists are smooth change of coordinates xη = xη(x̃

ξ) so that

g̃ρσ(x̃
ξ) =

∂xµ

∂x̃ρ
∂xν

∂x̃σ
gµν(x

η) for all x̃ξ.
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Same geometry, different coordinate system...
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 'diff


−1 − cos(x̃1) 0 0

− cos(x̃1) 1− cos2(x̃1) 2x̃2 0
0 2x̃2 4x̃2

2 + 1 −1
0 0 −1 2



Consider the change of coordinates xη = xη(x̃
ξ) given by:

x0 = x̃0 + sin(x̃1)
x1 = x̃1 + x̃2

2

x2 = x̃2 − x̃3

x3 = x̃3

 

dx0 = dx̃0 + cos(x̃1)dx̃1

dx1 = dx̃1 + 2x̃2dx̃2

dx2 = dx̃2 − dx̃3

dx3 = dx̃3

 

(dx0)
2 = (dx̃0)

2 + 2 cos(x̃1)dx̃0dx̃1 + cos2(x̃1)(dx̃1)
2

(dx1)
2 = (dx̃1)

2 + 4x̃2dx̃1dx̃2 + 4x̃2
2(dx̃2)

2

(dx2)
2 = (dx̃2)

2 − 2dx̃2dx̃3 + (dx̃3)
2

(dx3)
2 = (dx̃3)

2

Plug to ds2 = −(dx0)
2 + (dx1)

2 + (dx2)
2 + (dx3)

2
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Observables

Let S be a collection of spacetimes and consider the relation 'diff on S:

An observable is any map f : S → R that is diffeomorphism invariant:

for all gµν , g̃ρσ ∈ S we have gµν 'diff g̃ρσ =⇒ f(gµν) = f(g̃ρσ)

Usually R = R. For us, R can be any Polish space, such as R = RN.

Canonical Quantization Process

Step 1: Find a complete set of observables for S.

Step 2: Promote them to an algebra of operators on a Hilbert space H.
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The problem of observables

“We define observables as functions (or functionals) of field variables that
are invariant with respect to coordinate transformations.”

(1958) P.G. Bergmann, and A.I. Janis

“A program aiming at the identification and systematic exploitation of the
observables has been under way for many years, but its execution is

hampered by profound technical difficulties, which have not yet
been overcome completely.”

(1965) P.G. Bergmann,

“...presently we can give a formal characterization of observables in
general relativity, but we are actually not able to explicitly construct

many examples of quantities that satisfy it.”

(2001) L. Smolin

“Observables for full general relativity (without special asymptotic
symmetries or matter content) almost certainly do not exist.”

(2015) B. Dittrich, P. A. Höhn, T.A. Koslowski, and M.I. Nelson,
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Examples of Observables

• Komar mass for static spacetimes

gµν 7→
∫
M
(2Tµν − Tgµν)uµξν dM

It is a complete observable for all Schwarzschild solutions

• ADM Observables for asymptotically flat spacetimes

• Coordinate-like Observables for spacetimes filled with “generic dust”
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Incompleteness of Observables

Theorem (P., Sparling, Christodoulou)

Complete observables are not “analytically definable”

...in the same way that 3
√
2 cannot constructed by “straightedge–and–compass”
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Incompleteness of Observables

Theorem (P., Sparling, Christodoulou)

Assume that S ⊇ S∅ contains the collection of all vacuum solutions S∅.
Then there is no observable f : S → R that is both Borel and complete.

• A vacuum solution is any spacetime gµν which satisfies:

Rµν −
1

2
gµνR = 0

• f : S → R is complete if gµν 'diff g̃ρσ ⇐⇒ f(gµν) = f(g̃ρσ).

• f : S → R is Borel if it is Borel as a map from S ⊆ C∞(R4,R4×4)
endowed with the C∞-compact-open topology to the Polish space R.

Theorem (P., Sparling, Christodoulou)

“ZF+DC+no complete observables for S ⊇ S∅ exist” is consistent.
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Consider the equivalence relation 'Z on the space {0, 1}Z where

α 'Z β ⇐⇒ ∃k ∈ Z ∀n ∈ Z α(n+ k) = β(n)

i.e., the orbit equivalence relation of the Bernoulli shift Z y {0, 1}Z.

Theorem (Folkore)

There is no Borel map f : {0, 1}Z → R, taking values in Polish R, with

α 'Z β ⇐⇒ f(α) = f(β), for all α, β ∈ {0, 1}Z

Proof Sketch.
• Notice that Z y {0, 1}Z has a dense orbit. This implies the “0–1 law”:
if B ⊆ {0, 1}Z is Z–invariant and Borel, then one of B,Bc is comeager.
• Assume f exists. Find comeager C ⊆ {0, 1}Z so that f(C) = {x}

• Since Z is countable, there exist α 6'Z β in C. But f(α) = x = f(β)
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if B ⊆ {0, 1}Z is Z–invariant and Borel, then one of B,Bc is comeager.
• Assume f exists. Find comeager C ⊆ {0, 1}Z so that f(C) = {x}

• Since Z is countable, there exist α 6'Z β in C. But f(α) = x = f(β)
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General Strategy

Let S be a collection of spacetimes.

In order to prove that:

“there is no observable f : S → R that is both Borel & complete”

it suffices to prove that:

there exists a Borel reduction from ({0, 1}Z,'Z) to (S,'diff),
i.e., a Borel map r : {0, 1}Z → S with α 'Z β ⇐⇒ r(α) 'diff r(β)

Definition

S is rich if there exists a Borel reduction from ({0, 1}Z,'Z) to (S,'diff)
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Examples of Rich Families: part I

Theorem (Christodoulou, Sparling, P.)

For every n ≥ 2, the family of all spacetimes on Rn is rich.

Proof Idea.
Use the Cosmological Friedmann–Lemâıtre–Robertson–Walker metrics:

gµν := −dt2 +W (t)(dx2 + dy2 + dz2)

Source: Wikipedia Source: Samuel Velasco/Quanta Magazine
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Examples of Rich Families: part II

Theorem (Christodoulou, Sparling, P.)

The family S∅ of all vacuum solutions on R4 is rich.

“The problem already lies in the local degrees of freedom of the
background theory in 4D.”

Remark. There is a unique vacuum solution on R3!
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Proof: Plane Waves

Consider the variables u, v, x, y.

gHµν : (u, v, x, y) 7→


H(u, x, y) 1 0 0

1 0 0 0
0 0 1 0
0 0 0 1


Is a vacuum solution whenever Hxx +Hyy = 0.

Penrose: “A Remarkable Property of Plane Waves in General Relativity ”
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The reduction
For every α ∈ {0, 1}Z we define a “smooth version” wα : R→ R of α:

0 0 1 0 1 1

This defines a map r : {0, 1}Z → S∅ which maps α to

r(α) := gαµν given by (u, v, x, y) 7→


wα(u)xy 1 0 0

1 0 0 0
0 0 1 0
0 0 0 1



• Showing that αEZβ ⇒ r(α) 'diff r(β) is easy.
• Showing that αEZβ ⇐ r(α) 'diff r(β) is hard.
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The difficult direction

Assume that:

g :=
(
w̃(ũ)x̃ỹ

)
dũ2 + 2dũdṽ + dx̃2 + dỹ2

g̃ :=
(
w(u)xy

)
du2 + 2dudv + dx2 + dy2

are diffeomorphic under the smooth change of coordinates ϕ specified by

ũ = ũ(u, v, x, y)
ṽ = ṽ(u, v, x, y)
x̃ = x̃(u, v, x, y)
ỹ = ỹ(u, v, x, y)

Goal:
To show that w(u) is a Z-shift of w̃(ũ).

Naive approach: use the definition gµν =
∂x̃ρ

∂xµ
∂x̃σ

∂xν
g̃ρσ
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)
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ṽ = ṽ(u, v, x, y)
x̃ = x̃(u, v, x, y)
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Dead end

The relation gµν =
∂x̃ρ

∂xµ
∂x̃σ

∂xν
g̃ρσ gives the following equations:

H(u, x, y) = H̃(ũ, x̃, ỹ)ũu + 2ũuṽu + x̃2
u + ỹ2

u

0 = H̃(ũ, x̃, ỹ)ũv + 2ũvṽv + x̃2
v + ỹ2

v

1 = H̃(ũ, x̃, ỹ)ũx + 2ũxṽx + x̃2
x + ỹ2

x

1 = H̃(ũ, x̃, ỹ)ũy + 2ũyṽy + x̃2
y + ỹ2

y

1 = 2H̃(ũ, x̃, ỹ)ũuũv + 2(ũuṽv + ũvṽu) + 2x̃ux̃v + 2ỹuỹv
0 = 2H̃(ũ, x̃, ỹ)ũxũy + 2(ũxṽy + ũyṽx) + 2x̃xx̃y + 2ỹxỹy
0 = 2H̃(ũ, x̃, ỹ)ũuũx + 2(ũuṽx + ũxṽu) + 2x̃ux̃x + 2ỹuỹx
0 = 2H̃(ũ, x̃, ỹ)ũuũy + 2(ũuṽy + ũyṽu) + 2x̃ux̃y + 2ỹuỹy
0 = 2H̃(ũ, x̃, ỹ)ũvũx + 2(ũvṽx + ũxṽv) + 2x̃vx̃x + 2ỹvỹx
0 = 2H̃(ũ, x̃, ỹ)ũvũy + 2(ũvṽy + ũyṽv) + 2x̃vx̃y + 2ỹvỹy

Good Luck!

Aristotelis Panagiotopoulos (KGRC) Incompleteness for Observables 31 / 37



Instead: analyze the Killing vector fields!

By analyzing the Lie algebra of Killing fields: every diffeo ϕ between

g = H̃(ũ, x̃, ỹ)dũ2 + 2dũdṽ + dx̃2 + dỹ2

g̃ = H(u, x, y)du2 + 2dudv + dx2 + dy2

has to be of the following form, for some a, b, c and f(x), g(u), h(u):

ũ = (u+ a)/c
x̃ = x cos(b) + y sin(b) + g(u)
ỹ = −x sin(b) + y cos(b) + h(u)
ṽ = c[v − x

(
cos(b)g′(u)− sin(b)h′(u)

)
−y
(
sin(b)g′(u)− cos(b)h′(u)

)
− f(u)]

Jordan, Ehlers, Kundt (based on work of Robinson)
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Canonical Quantization

Step 1: Find complete set of observables.

Step 2: promote them to an algebra of operators on a Hilbert space H.

Equivariant forms of Quantization

G–observables where G has nice representation theoretic properties.
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The Borel reduction hierarchy

•
•

•(X,E)

•(X̃, Ẽ)

6
A classification problem (X,E) is an equivalence relation E on Polish X

(X,E) 6 (X̃, Ẽ) iff (X,E) Borel reduces to (Y, F )

iff there exists Borel r : X → Y so that xEx′ ⇐⇒ r(x)Fr(x′)
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Program. Place (S,'diff) in the Borel reduction hierarchy

•
•(S,'diff)

?

compact

•
locally compact

X

U(H)
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Thαnk you!
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