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Let M be smooth 4-dimensional manifold. A Lorentzian metric on M is

“a symmetric and (1, 3)-signature section g of the bundle (TM ® TM)* — M"
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Lorentzian metrics: abstractly

Let M be smooth 4-dimensional manifold. A Lorentzian metric on M is

“a symmetric and (1, 3)-signature section g of the bundle (TM @ TM)* — M"

g(V, W)p := the “inner product” of V., W atp e M

R. Penrose, “The Road to Reality”
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Lorentzian metrics: concretely

A Lorentzian metric on R* is given by a smooth map g, : R? — R**4

goo

({L‘O,SL‘l,$2,l’3) — g10

goi1
gi1
g21
931

go2
g12
g22
932

go3
g13
923
933

with g, being a symmetric, (—, +, +, +)-signature matrix. We have

g = g/,bl/ dmudl'y
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Lorentzian metrics: concretely

A Lorentzian metric on R* is given by a smooth map g, : R? — R**4

goo 9go1 9go2 go3
gio 911 g12 913
920 921 922 923
930 931 932 933

with g, being a symmetric, (—, +, +, +)-signature matrix. We have

g = g/,bl/ dmud$y

Example

then = —dt’> 4 da® + dy?® + d2*

)

S O = O
o= OO
o O O

0
It 1w = 0
0
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Einstein field equations

By a spacetime we mean a Lorentzian metric g, : R* — R**4, satisfying:

1 81G
R,u,u - ig;wR = CTTMV

for some “physically relevant” Stress-Energy tensor 7).

uv ~ RZJV ~ R#y ~ R

Compare to Poisson’s equation for Newton's law of gravity:

V2p = 4nGp
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Example

Guv = 1/(2w?)[ = (dt + e*dy)? + da? + 1/2e**dy? + dz?]

T),, = "rotating dust” + “negative cosmological constant”

Null cone
N“{l 501.10 tangent to
includes circle

p’s null cone refocuses at p’

circle Caustic on p's

future null cone

Null geodesics

/ .
/ Null cone /
/ tangent to
/ N . /
/ N 7 circle
y = T

P> logl1+v3) > T 8-
/closed timelike = log(1 + Null cone N
curve) ! (closed null curve) g7 > includes circle  “L

N

/ i 5—*"'11"3 future "\ =0
r < log(1+v2) p null cone

Figure. Nrmeti, Madardsz, Andréka, Andai (after Hawking, Ellis)
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Example

Guv = 1/(2w?)[ — (dt + e"dy)* + da® + 1/2e**dy? + dz?]

T),, = "rotating dust” + “negative cosmological constant”

Null
Null cone  tangent o
includes

circle

ing, Ellis)

“Is the universe rotating yet?" K. Godel
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Question. Do g, and g,, represent different “geometries”?

-1 0 0 0
o 100
=10 010
0 00 1
[ -1 —cos(z1) 0 0
~ |—cos(z1) 1—cos’(x1) 2w 0
Joo= =1 ¢ 275 dz2+1 —1
0 0 12
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Question. Do g, and g,, represent different “geometries”?

-1 0 0 0
o 100
=10 010
0 00 1
[ -1 —cos(z1) 0 0
~ |—cos(z1) 1—cos’(x1) 2w 0
Joo= =1 ¢ 275 dz2+1 —1
0 0 12

We say that g,,, and g,, are diffeomorphic and write g, ~qig gpo if
there exists are smooth change of coordinates x, = :vn(ﬁff) so that

~ o~ Ozt Ox” ~
Gpo (@) = %@gﬂy(x") for all Z°.
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Same geometry, different coordinate system...

-1 0 0 0 -1 —cos(Z1) 0 0
0 100 N —cos(T1) 1—rcos®(T1) 279 0
0 0 1 of % 0 P AT +1 -1
0 0 01 0 0 -1 2
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Same geometry, different coordinate system...

-1 0 0 0 -1 —cos(Z1) 0 0
0 100 N —cos(T1) 1—rcos®(T1) 279 0
0 0 1 of % 0 P AT +1 -1
0 0 01 0 0 -1 2

Consider the change of coordinates z,, = z,,(7%) given by:

o= o+ Sin(fl)
xr1 = T1 + fg
T2 = 52 - §3
T3 = T3
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Same geometry, different coordinate system...

-1 0 0 0 -1 —cos(Z1) 0 0
0 100 o —cos(T1) 1—rcos®(T1) 279 0
0 0 1 of % 0 P AT +1 -1
0 0 0 1 0 0 -1 2

Consider the change of coordinates z,, = z,,(7%) given by:
To= To-+ sin(fl) drg = dZg+ COS(%l)dzl
xr1 = r1 + 5% — dr, = dxr1 + 279dTo
9 = 52 — 53 dCCQ = d?L‘é — dfg
xr3 = f3 dm‘g = d%g
(d$0)2 = (dio)2 + 2C08(%1)d550d51 + COS2(f1) d§1)2
— (dl‘l)Q = (d.%l)z + 479dz1dTo + 45%((1.%2)2
(d:IJQ)Q = (d52)2 — Qdfgdfig + (d53)2
(dx3)* = (d73)°
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Same geometry, different coordinate system...

-1 0 0 O
0 1 00
0 010
0 0 01

-1 —cos(Z1) 0 0
N —cos(T1) 1—rcos®(T1) 279 0
it 0 P AT +1 -1
0 0 -1 2

Consider the change of coordinates z,, = z,,(7%) given by:

o= o+ sin(fl) drg = dxg+ COS(%l)dzl
xr1 = r1 + 5% dr, = dxr1 + 279dTo
9 = 52 — 53 h dCCQ = d?L‘é — dfg
T3 = f3 dm‘g = d%g
(dzo)? = (dZ0)? + 2cos(T1)dTodT1 + cos?(z1)(dT1)?
— (dl‘l)Q = (d.%l)z + 479dz1dTo + 45%((1.%2)2
(d:IJQ)Q = (d52)2 — 2dzodx3 + (d53)2
(dz3)* = (d73)°

Plug to

ds® = —(dwo)? + (dz1)? + (da2)? + (das)?
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Observables

Let S be a collection of spacetimes and consider the relation ~g;g on S:

¢

Juv
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Let S be a collection of spacetimes and consider the relation ~g;g on S:

¢

Juv

An observable is any map f: & — R that is diffeomorphism invariant:

for all g/u/agpa €S we have Guv =diff gpa = f(g;w) = f(gpa)
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Let S be a collection of spacetimes and consider the relation ~g;g on S:

¢

Juv

An observable is any map f: & — R that is diffeomorphism invariant:

for all guwgpa €S we have Guv =diff gpa = f(g;w) = f(gpa)

Usually R = R. For us, R can be any Polish space, such as R = RY.
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Observables

Let S be a collection of spacetimes and consider the relation ~g;g on S:

¢

Juv

An observable is any map f: & — R that is diffeomorphism invariant:

for all gumgpa €S we have Guv =diff gpa = f(gw/) = f(gpa)

Usually R = R. For us, R can be any Polish space, such as R = RY.

Canonical Quantization Process
Step 1: Find a complete set of observables for S.

Step 2: Promote them to an algebra of operators on a Hilbert space H.
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The problem of observables

“We define observables as functions (or functionals) of field variables that
are invariant with respect to coordinate transformations.”

(1958) P.G. Bergmann, and A.l. Janis

“A program aiming at the identification and systematic exploitation of the
observables has been under way for many years, but its execution is
hampered by profound technical difficulties, which have not yet
been overcome completely.”

(1965) P.G. Bergmann,
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(1958) P.G. Bergmann, and A.l. Janis

“A program aiming at the identification and systematic exploitation of the
observables has been under way for many years, but its execution is
hampered by profound technical difficulties, which have not yet
been overcome completely.”

(1965) P.G. Bergmann,

“..presently we can give a formal characterization of observables in
general relativity, but we are actually not able to explicitly construct
many examples of quantities that satisfy it.”

(2001) L. Smolin
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The problem of observables

“We define observables as functions (or functionals) of field variables that
are invariant with respect to coordinate transformations.”

(1958) P.G. Bergmann, and A.l. Janis

“A program aiming at the identification and systematic exploitation of the
observables has been under way for many years, but its execution is
hampered by profound technical difficulties, which have not yet
been overcome completely.”

(1965) P.G. Bergmann,

“..presently we can give a formal characterization of observables in
general relativity, but we are actually not able to explicitly construct
many examples of quantities that satisfy it.”

(2001) L. Smolin

“Observables for full general relativity (without special asymptotic
symmetries or matter content) almost certainly do not exist.”

(2015) B. Dittrich, P. A. Hohn, T.A. Koslowski, and M.I. Nelson,

Aristotelis Panagiotopoulos (KGRC) Incompleteness for Observables 15 /37



Examples of Observables

e Komar mass for static spacetimes

G / (2T, — Tguw )" dM
M

It is a complete observable for all Schwarzschild solutions

{ Black hole

e ADM Observables for asymptotically flat spacetimes

e Coordinate-like Observables for spacetimes filled with “generic dust”
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Incompleteness of Observables

Complete observables are not “analytically definable”

Theorem (P., Sparling, Christodoulou) J

...in the same way that /2 cannot constructed by “straightedge—and—compass”
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Incompleteness of Observables

Theorem (P., Sparling, Christodoulou)

Assume that S O Sy contains the collection of all vacuum solutions Sp.
Then there is no observable f: S — R that is both Borel and complete.
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e A vacuum solution is any spacetime g,,, which satisfies:

1
R/_“/ — ig/“/R =0
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1

R, — 5

gl =0

o f: S — Ris complete if g, ~gif Gpo = f(gu) = [(Gpo)-
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Incompleteness of Observables

Theorem (P., Sparling, Christodoulou)

Assume that S O Sy contains the collection of all vacuum solutions Sp.
Then there is no observable f: S — R that is both Borel and complete.

e A vacuum solution is any spacetime g,,, which satisfies:

1
R/_“/ — §gHyR =0

o f: S — Ris complete if g, ~gif Gpo = f(gu) = [(Gpo)-

e f: S — Ris Borel if it is Borel as a map from S C C®°(R* R**4)
endowed with the C°°-compact-open topology to the Polish space R.
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Incompleteness of Observables

Theorem (P., Sparling, Christodoulou)

Assume that S O Sy contains the collection of all vacuum solutions Sp.
Then there is no observable f: S — R that is both Borel and complete.

e A vacuum solution is any spacetime g,,, which satisfies:

1
R/_“/ — §gHyR =0

o f: S — Ris complete if g, ~gif Gpo = f(gu) = [(Gpo)-
e f: S — Ris Borel if it is Borel as a map from S C C®°(R* R**4)
endowed with the C°°-compact-open topology to the Polish space R.

Theorem (P., Sparling, Christodoulou)
“ZF+DC+no complete observables for S O Sy exist” is consistent. J
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Consider the equivalence relation ~z on the space {0, 1}% where
a~y B <= JkeZ VneZ a(n+ k)= p(n)

i.e., the orbit equivalence relation of the Bernoulli shift Z. ~ {0, 1}Z.
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Consider the equivalence relation ~z on the space {0, 1}% where
a~y B <= JkeZ VneZ a(n+ k)= p(n)

i.e., the orbit equivalence relation of the Bernoulli shift Z. ~ {0, 1}Z.

Theorem (Folkore)
There is no Borel map f: {0,1}* — R, taking values in Polish R, with

a~z B < fla)=f(B), forall o,Bc{0,1}*
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a~y B <= JkeZ VneZ a(n+ k)= p(n)

i.e., the orbit equivalence relation of the Bernoulli shift Z. ~ {0, 1}Z.

Theorem (Folkore)

There is no Borel map f: {0,1}* — R, taking values in Polish R, with

a~z B < fla)=f(B), forall o,Bc{0,1}*

Proof Sketch.
e Notice that Z ~ {0,1}” has a dense orbit. This implies the “0-1 law":
if B C {0,1}* is Z~invariant and Borel, then one of B, B¢ is comeager.
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Consider the equivalence relation ~z on the space {0, 1}% where
a~y B <= JkeZ VneZ a(n+ k)= p(n)

i.e., the orbit equivalence relation of the Bernoulli shift Z. ~ {0, 1}Z.

Theorem (Folkore)

There is no Borel map f: {0,1}* — R, taking values in Polish R, with

a~z B < fla)=f(B), forall o,Bc{0,1}*

Proof Sketch.

e Notice that Z ~ {0,1}” has a dense orbit. This implies the “0-1 law":
if B C {0,1}* is Z~invariant and Borel, then one of B, B¢ is comeager.
e Assume f exists. Find comeager C C {0,1}% so that f(C) = {x}

(

/= [(), 1]
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Consider the equivalence relation ~z on the space {0, 1}% where
a~y B <= JkeZ VneZ a(n+ k)= p(n)

i.e., the orbit equivalence relation of the Bernoulli shift Z. ~ {0, 1}Z.

Theorem (Folkore)

There is no Borel map f: {0,1}* — R, taking values in Polish R, with

a~z B < fla)=f(B), forall o,Bc{0,1}*

Proof Sketch.

e Notice that Z ~ {0,1}” has a dense orbit. This implies the “0-1 law":
if B C {0,1}* is Z-invariant and Borel, then one of B, B¢ is comeager.
e Assume f exists and get comeager C' C {0, 1}% so that f(C) = {z}

{

/= [(), 1]
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Consider the equivalence relation ~z on the space {0, 1}% where
a~y B <= JkeZ VneZ a(n+ k)= p(n)

i.e., the orbit equivalence relation of the Bernoulli shift Z. ~ {0, 1}Z.

Theorem (Folkore)

There is no Borel map f: {0,1}* — R, taking values in Polish R, with

a~z B < fla)=f(B), forall o,Bc{0,1}*

Proof Sketch.

e Notice that Z ~ {0,1}” has a dense orbit. This implies the “0-1 law":
if B C {0,1}* is Z-invariant and Borel, then one of B, B¢ is comeager.
e Assume f exists and get comeager C' C {0, 1}% so that f(C) = {z}

XXXy — by

/
AN >
/ //
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Consider the equivalence relation ~z on the space {0, 1}% where
a~y B <= JkeZ VneZ a(n+ k)= p(n)

i.e., the orbit equivalence relation of the Bernoulli shift Z. ~ {0, 1}Z.

Theorem (Folkore)
There is no Borel map f: {0,1}* — R, taking values in Polish R, with

a~z B < fla)=f(B), forall o,Bc{0,1}*

Proof Sketch.
e Notice that Z ~ {0,1}” has a dense orbit. This implies the “0-1 law":
if B C {0,1}* is Z-invariant and Borel, then one of B, B¢ is comeager.
e Assume f exists and get comeager C' C {0, 1}% so that f(C) = {z}

N\
A/

XXXy — by

/
AN >
/ //

e Since Z is countable, there exist a %7 5 in C. But f(a) =z = f(5)
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General Strategy

Let S be a collection of spacetimes.

In order to prove that:

“there is no observable f: & — R that is both Borel & complete”

it suffices to prove that:

there exists a Borel reduction from ({0,1}%,~7) to (S, ~aiz),
i.e., a Borel map 7: {0,1}? — S with a ~z 8 <= r(a) ~ag r(B)
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General Strategy

Let S be a collection of spacetimes.

In order to prove that:

“there is no observable f: & — R that is both Borel & complete”

it suffices to prove that:

there exists a Borel reduction from ({0,1}%,~7) to (S, ~aiz),
i.e., a Borel map 7: {0,1}? — S with a ~z 8 <= r(a) ~ag r(B)

Definition
S is rich if there exists a Borel reduction from ({0,1}% ~7) to (S, ~qix) J
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Examples of Rich Families: part |

For every n > 2, the family of all spacetimes on R"™ is rich.

Theorem (Christodoulou, Sparling, P.) J
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Examples of Rich Families: part |
Theorem (Christodoulou, Sparling, P.)
For every n > 2, the family of all spacetimes on R"™ is rich.

Proof ldea.

Use the Cosmological Friedmann—Lemaitre-Robertson—-Walker metrics:

Guv 1= —dt* + W (t)(da? + dy? + d2?)
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Examples of Rich Families: part |
Theorem (Christodoulou, Sparling, P.)

For every n > 2, the family of all spacetimes on R"™ is rich.

Proof ldea.
Use the Cosmological Friedmann—Lemaitre-Robertson—-Walker metrics:

Guv 1= —dt* + W (t)(da? + dy? + d2?)

Dark Energy
Accelerated Expansion

Afterglow Light
Patt

e Dark Ages Development of
375,000 yrs.

1st Stars.
about 400 million yrs.

Big Bang Expansion

13.77 billion years

Source: Wikipedia Source: Samuel Velasco/Quanta Magazine
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Examples of Rich Families: part Il

Theorem (Christodoulou, Sparling, P.) J

The family Sy of all vacuum solutions on R* s rich.

“The problem already lies in the local degrees of freedom of the
background theory in 4D."
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Examples of Rich Families: part Il

The family Sy of all vacuum solutions on R* s rich.

Theorem (Christodoulou, Sparling, P.) J

“The problem already lies in the local degrees of freedom of the
background theory in 4D."

Remark. There is a unique vacuum solution on R3!
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Proof: Plane Waves

Consider the variables u, v, x, y.

H(u,z,y) 1 0 0

H 1 000
guu' (U/,U,x,y) = 0 0 1 0
0 0 01

Is a vacuum solution whenever H,, + H,, = 0.

Penrose: "A Remarkable Property of Plane Waves in General Relativity "
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The reduction
For every a € {0, 1}” we define a “smooth version” w®: R — R of a:

{ -0 0 1 0 1 1 .-

This defines a map 7: {0,1}* — Sy which maps a to

r(a) =gy, gvenby (u,v,z,y)

S
Q
—~
SO =g
SN—
8
<
o O O
o~ O O
_ o o o
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The reduction
For every a € {0, 1}” we define a “smooth version” w®: R — R of a:

{ -0 0 1 0 1 1 .-

This defines a map 7: {0,1}* — Sy which maps a to

a

r(a) =gy, gvenby (u,v,z,y)

S
Q
—~
SO =g
SN—
8
<
o O O
o~ O O
_ o o o

e Showing that aEz8 = r(«a) ~qg r(F) is easy.
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The reduction
For every a € {0, 1}” we define a “smooth version” w®: R — R of a:

{ -0 0 1 0 1 1 .-

This defines a map 7: {0,1}* — Sy which maps a to

a

r(a) =gy, gvenby (u,v,z,y)

S
Q
—~
SO =g
SN—
8
<
o O O
o~ O O
_ o o o

e Showing that aEz8 = r(«a) ~qg r(F) is easy.
e Showing that aEz8 <« 7r(a) ~gg () is hard.
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The difficult direction

Assume that:

§ = (w(u)zy)du® + 2dudv + dz* + dy*

are diffeomorphic under the smooth change of coordinates ¢ specified by

i = a(u,v,,y)
’D = 6(“7’07'%7 y)
z=z(u,v,x,y)
g = g(u7 U7 x? y)
Goal:

To show that w(u) is a Z-shift of w(1).
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The difficult direction

Assume that:

§ = (w(u)zy)du® + 2dudv + dz* + dy*

are diffeomorphic under the smooth change of coordinates ¢ specified by

= u(u,v,x,y)
0 =0(u,v,z,y)
z=z(u,v,x,y)
y= g(uv v, T, y)
Goal:
To show that w(u) is a Z-shift of w(1).

— 0zP 077 _
Naive approach: use the definition | g, = %a—xugw
X X
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Dead end

The relation

H(u,z,y)

O O OO O = == O

Aristotelis Panagiotopoulos (KGRC)

gives the following equations:

‘|’ 2%4 %y + 2YuYu
+ 2T,y + 2y Yy
+ 224 Ty + 29u¥s
+ 2Ty, Ty + 2947y
+ 22Ty + 2YpYz

ﬁ(N,:Z‘ )y, +2uuvu—|—x —I—yu
H (i, 2, )l + 200y + 553 + g%i
H (i, &, )ty + 200y + 32 + yz
H (@, %, §)ty + 2y by, + 32 + §2

2H (U, &, §) Uy Ty + 2(Uy Dy + Uy Dy,

2H (il, &, §) iy + 2(fls uy + Ty Ty

2H (1, &, §) iy Tl + 2(T 0y + gD

2H (i, , §) ity + 2(Thn vy + Gy Dy,

2H (1, &, §) iyl + 2(ThyTy + Ty

2H (i, %, §) iy iy + 2(iy by + Ty,

Good Luck!
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Instead: analyze the Killing vector fields!
By analyzing the Lie algebra of Killing fields: every diffeo ¢ between
g = H(a,#,75)du? + 2dadv + dz? + dij?

G = H(u,z,y)du?® + 2dudv + dz? + dy?

has to be of the following form, for some a,b,c and f(z),g(u), h(u):

u = (u+a)/c

e x cos(b) + ysin(b) + g(u)

g = —xsin(b) + y cos(b) + h(u)

o = cfv—xz(cos(b)g(u) — sin(b) (u))

—y(sin(b)g'(u) — cos(b)h' (u)) — f(u)]

Jordan, Ehlers, Kundt (based on work of Robinson)‘
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Canonical Quantization
Step 1: Find complete set of observables.

(S, ~airr)

¢

Guv

Step 2: promote them to an algebra of operators on a Hilbert space H.
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onical Quantization Cannot be done in a

constructive fashion if
S D {vacuum solutions}

(S, ~aifr)

R

¢

Guv

Step 2: promote them to an algebra of operators on a Hilbert space H.
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onical Quantization Cannot be done in a
tep L. ervables. constructive fashion if

S D {vacuum solutions}

(S, ~air) R

¢

Guv

Step 2: promote them to an algebra of operators on a Hilbert space H.

Equivariant forms of Quantization

(S, ~aifr)

— G

?888

Guv

(G—observables where G has nice representation theoretic properties.
o
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The Borel reduction hierarchy

(X,E) ®--__

(X, E) ®__ %
AN
&

A classification problem (X, E') is an equivalence relation E on Polish X

(X,E) < (X,E) iff (X,E) Borel reduces to (Y, F)
iff there exists Borel 7: X — Y so that zE2’ <= r(x)Fr(a)
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Program. Place (S, ~gig) in the Borel reduction hierarchy J
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Program. Place (S, ~gi) in the Borel reduction hierarchy J

compact
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Thank you!
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