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Proof mining in one slide

In proof mining, proof-theoretic methods are used to establish new results
in core mathematics.

For this, existing proofs are analyzed to extract additional information.

Sometimes, such an analysis reveals superfluous premises.

In recent times, these proof-theoretic methods have also been used to
produce wholly new results and notions.

Conceptually, this goes back to Georg Kreisel’s program of unwinding of
proofs from the 1950’s, but was developed in its modern form
systematically by Ulrich Kohlenbach (and his collaborators) since the
1990’s.



Logical metatheorems

The core logical results substantiating proof mining are the so-called
logical metatheorems.

These logical metatheorems are theorems about a corresponding logical
system so that

1. the system allows for the formalization of large classes of objects and
proofs in the respective area of application,

2. the metatheorem guarantees that for large classes of (ineffective)
proofs carried out in the system, one can extract effective, tame and
highly uniform computational information for the theorem proved
thereby.

Commonly based on extended systems of arithmetic in all finite types and
established using a variety of proof-theoretic devices, most notably Gödel’s
functional interpretation and Howard’s majorizability (monotone functional
interpretation).

> 20 developed since the work of Kohlenbach in the 1990s in tandem with
applications for various areas.



This talk
My PhD thesis, written under Ulrich Kohlenbach, is concerned with
extending proof mining, both from a logical and an applied perspective, to
topics from nonlinear analysis and optimization which involve set-valued
operators, i.e. operators

A : X → 2Y

for spaces X ,Y (which for the purpose of this talk will be normed vector
spaces).

In the rest of the talk, I will try to give you a brief overview of one specific
topic discussed in my thesis, concerned with an area of modern convex
analysis called monotone operator theory.

I will try to give a high level overview of both some logical and applied
aspects of that part.

In the end I briefly discuss another main area that is also treated.

As we are in the following concerned with analysis on normed vector
spaces, we first need some background on proof mining for these objects.



Logical background
The basic system here is Aω[X , ‖·‖] for analysis over (abstract,
non-separable) normed spaces (Kohlenbach 2005): arises as extension of

Aω = WE-PAω + QF-AC + DC

to an augmented set of types TX

N,X ∈ TX , ρ, τ ∈ TX ⇒ ρ→ τ ∈ TX

as well as with new constants

0X , 1X of type X , +X of type X → (X → X ), −X of type X → X ,

·X of type NN → (X → X ), ‖·‖X of type X → NN,

and axioms stating that X with these operations is a real normed vector
space with 1X such that ‖1X‖X =R 1 and −X x being the additive inverse
of x .

Only equality at N primitively. Equality at X defined by

xX =X yX := ‖x −X y‖X =R 0

using a suitable representation of reals and at higher types pointwisely.



The dual of a normed space
We main operators we want to consider are A : X → 2X

∗
where X ∗ is the

dual of X :

X ∗ = {x∗ : X → R | x∗ linear and continuous}.

This becomes a normed space via setting

‖x∗‖ = sup
‖x‖≤1

|〈x , x∗〉|.

There are many immediate difficulties with treating this object in systems
such as Aω[X , ‖·‖] amenable to proof mining methods:

1. The defining matrix of X ∗ is complex (≥ ΠX
1 ), making quantification

over elements in X ∗ seen as objects of type X → NN difficult and
turning many essential statements about the dual into non-admissible
axioms.

2. The norm of X ∗ involves a supremum over the (abstract,
non-separable) space X and it is not clear how such a supremum can
be represented in the underlying system.

3. ...



Treating the dual intensionally
The remedy, which allows for a tame treatment of these objects, is to
approach the dual X ∗ intensionally: instead of specifying the subspace of
all continuous and linear functionals of type X → NN, we introduced
another base type X ∗ and axiomatically specify that all elements of X ∗,
seen as an abstract space, behave like continuous linear functionals.

For that, we need to restore the application character of elements of type
X ∗ with an additional constant 〈·, ·〉X∗ of type X ∗ → (X → NN) and we
need to restore the linear structure on X ∗ with constants 0X∗ , 1X∗ , +X∗ ,
−X∗ and ·X∗ of suitable type and governed by suitable universal axioms
(which trivialize under the functional interpretation).

The intensional approach in particular enables us to treat the associated
dual norm ‖·‖X∗ in the context of the monotone functional interpretation
with the following norm axioms:

∀x∗X
∗
, xX (|〈x , x∗〉X∗ | ≤R ‖x∗‖X∗ ‖x‖X ) ,

∀x∗X
∗
, k0∃x ≤X 1X

(
‖x∗‖X∗ − 2−k ≤R |〈x , x∗〉X∗ |

)
.



Treating the dual intensionally

Crucially however: no axioms specify that this abstract space really
contains all such functionals and instead we only have the rule{

A0 → ∀xX , yX , α1, β1 (t(αx +X βy) =R αtx + βty)

A0 → ∀xX (|tx | ≤R M ‖x‖X )

A0 → ∃x∗ ≤X∗ M1X∗∀xX (tx =R 〈x , x∗〉X∗)
(QF-LR)

that closes this abstract space off under functionals which are provably
linear and continuous.

For the resulting system Dω, extending Aω[X , ‖·‖], a logical metatheorem
can be proved using the monotone functional interpretation that allows for
the extraction of computable and tame bounds from large classes of proofs
that involve the dual.



Modern convex analysis: monotone operators

In particular, this system also serves as the basis for approaching a central
class of set-valued operators:

Let X be a Banach space and consider so-called monotone set-valued
operators A : X → 2X

∗
(Browder 1965) which are operators that satisfy

〈x − y , x∗ − y∗〉 ≥ 0

for all (x , x∗), (y , y∗) ∈ A.

A is called maximally monotone if its graph is not strictly contained in the
graph of another monotone operator.

We are interested in finding zeros of A, i.e. points x with 0 ∈ Ax .



Zeros of monotone operators

Why? Consider, the canonical example of a monotone operator, the
subdifferential of a convex function h : X → (−∞,+∞]:

∂h(x) := {x∗ ∈ X ∗ | h(x) + 〈y − x , x∗〉 ≤ h(y) for all y ∈ X}.

This operator is maximally monotone (Rockafellar 1966) and one in
particular has zer∂h = minh.



The relativized resolvent

To study such operators, one employs a special derived object, the
(relativized) resolvent (Eckstein 1993):

Let A be maximally monotone. Given a (Frechét) differentiable convex
function f with gradient ∇f and γ > 0: define ResfγA : X → 2X with

ResfγA(x) :=
(
(∇f + γA)−1 ◦ ∇f

)
(x).

Under suitable assumptions on f : single-valued and total. Also, the zeros
of A are exactly the fixed points of all/any ResfγA.

All these objects can be treated in underlying systems extending Dω
meanwhile allowing for metatheorems. In particular the operators can be
treated intensionally via a constant χA of type X → (X ∗ → N) coding its
graph.

The resulting bound extraction theorems allow for various applications to
convex analysis to be carried out and multiple such case studies are
contained in my thesis. Let’s consider one example in a bit more detail.



An exemplary application: finding zeros of monotone operators

For a maximally monotone operator A with A−10 6= ∅, we now consider the
following method for finding zeros of A (a so-called Halpern-type method):

For a given u, x0 ∈ X , define the sequence

xn+1 = ∇f ∗(αn∇fu + (1− αn)∇fResfrnAxn)

for scalars αn → 0 as well as
∑∞

n=0 αn =∞ and rn →∞ and where

f ∗(x∗) = sup
x∈X

(〈x , x∗〉 − f (x)) .

Then we get xn → x ∈ A−10 under suitable assumptions on f .

In particular, the iteration is asymptotically regular w.r.t. the resolvent in
the sense that ∥∥∥xn − ResfAxn

∥∥∥→ 0 (n→∞).

We want to extract quantitative information on this limit from the proof.



Halpern-type proximal point methods, quantitatively

Theorem
Let b ≥ ‖u‖ , ‖xn‖ ,

∥∥ResfrnAxn∥∥. Let σ be a rate of convergence for
αn → 0 as n→∞. Let τ be a rate of divergence for rn →∞ as n→∞.
Let ω∇f , ω∇f

∗
be moduli of uniform continuity on bounded sets for

∇f ,∇f ∗, respectively. Let η be a modulus of uniform strict convexity for
f .

Then, we can construct a mapping Φb,σ,τ,ω∇f ,ω∇f ∗ ,η(ε) such that

∀ε > 0∀n ≥ Φb,σ,τ,ω∇f ,ω∇f ∗ ,η(ε)
(∥∥∥xn − ResfAxn

∥∥∥ < ε
)
.

In particular, we have

∀ε > 0∀n ≥ Φb,σ,τ,ω∇f ,ω∇f ∗ ,η(ε)∃z ∈ X
(
‖z‖ < ε and z ∈ A(ResfAxn)

)
.



Monotone operators in Banach spaces, quantitatively

Theorem
The functional Φb,σ,τ,ω∇f ,ω∇f ∗ ,η(ε) can be defined as

Φb,σ,τ,ω∇f ,ω∇f ∗ ,η(ε) :=

max

{
ϕ

(
ρ(ω∇f (ω∇f

∗
(ε,C (b))/2, b), b)

4C (b)

)
, σ

(
ω∇f

∗
(ε,C (b)/2

2C (b)

)

τ

 4C (b)b2

4η
(
ω∇f

(
ρ(ω∇f (ω∇f ∗ (ε,C(b))/2,b),b)

8b , b
)
, b
)
}+ 1

with

ρ(ε, b) = 2η(ε, b + ε),

C (b) =
⌈
b/ω∇f (1, b)

⌉
+ ‖∇f (0)‖+ 1, ϕ(ε) := σ

(
ω∇f

∗
(ε,C (b))

2C (b)

)
.



Further topics from the thesis

Another major area from the thesis is concerned with so-called nonlinear
semigroups and accretive operators A : X → 2X for Banach spaces X .

These semigroups and operators are key objects in the study of differential
equations: for any such operator A, the solution set of the differential
equation {

u′(t) ∈ −Au(t), 0 < t <∞
u(0) = x

can be described and studied through semigroup theory and many
well-known differential equations can be brought into this form for a
suitable operator A.

My thesis introduced the first logical systems suitable for proof mining for
these objects and utilized them to carry out a selection of case studies on
theorems describing the asymptotic behavior of solutions of such
differential equations.
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At last ...

Thank You!


