On the Definability and Complexity of Sets and Structures

Linus Richter

National University of Singapore

9 October, 2024

Definition (Classical mathematics)

Those mathematical subjects which, originally, have no connection to mathematical logic.

For example:

- Analysis
- Algebra
- Geometry
- ...

Goal

Use tools from mathematical logic to prove theorems from classical mathematics. In particular, find definable counterexamples.

A set $X \subset \mathbb{R}$ has the perfect set property if it is countable or if it contains a perfect (i.e. closed with no isolated points) subset.

 $\begin{array}{l} ({\sf ZF}) \mbox{ every analytic set has PSP (Souslin)} \\ ({\sf ZFC}) \mbox{ some set does not have PSP (Bernstein)} \\ ({\sf ZF}+{\sf AD}) \mbox{ every set has PSP (Mycielski, Swierczkowski)} \\ ({\sf ZF}+{\sf V}={\sf L}) \mbox{ some coanalytic set does not have PSP (Gödel)} \end{array}$

Complexity (here Borel/projective hierarchy) informs about provability (over the "base theory" ZF)!

Fix some property of sets of reals P.

Question

For which sets is P provable? What is the "simplest" set failing P? We use descriptive set theory.

Definition (Hausdorff dimension) For $E \subset \mathbb{R}^n$

 $\dim_{\mathcal{H}}(E) = \sup\{s \mid \mathcal{H}^{s}(E) = \infty\} = \inf\{s \mid \mathcal{H}^{s}(E) = 0\}.$

Marstrand's Projection Theorem (J. Marstrand, 1954) Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $\dim_H(p_{\theta}(E)) = \min\{\dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Does Marstrand's Theorem provably apply to more sets?

Theorem (Davies, 1979)

Assuming CH, there exists a set $E \subset \mathbb{R}^2$ with dim_{*H*}(E) = 1 while, for every θ , we have dim_{*H*}($p_{\theta}(E)$) = 0.

A set $E \subset \mathbb{R}^2$ has the Marstrand property (MP) if Marstrand's theorem applies to it.

 $\begin{array}{l} ({\sf ZF}) \mbox{ every analytic set has MP (Marstrand, Mattila)} \\ ({\sf ZFC}+{\sf CH}) \mbox{ some set does not have MP (Davies)} \\ ({\sf ZF}+{\sf AD}) \mbox{ ?} \\ ({\sf ZF}+{\sf V}={\sf L}) \mbox{ ?} \end{array}$

A set $E \subset \mathbb{R}^2$ has the Marstrand property (MP) if Marstrand's theorem applies to it.

 $\begin{array}{l} ({\sf ZF}) \mbox{ every analytic set has MP (Marstrand, Mattila)} \\ ({\sf ZFC}+{\sf CH}) \mbox{ some set does not have MP (Davies)} \\ ({\sf ZF}+{\sf AD}) \mbox{ ?} \\ ({\sf ZF}+{\sf V}={\sf L}) \mbox{ some co-analytic set does not have MP (R.)} \end{array}$

Marstrand's theorem (special case) For every analytic $E \subset \mathbb{R}^2$ for which $\dim_H(E) = 1$ we have $\dim_H(p_{\theta}(E)) = 1$ for almost all θ .

Marstrand's theorem (special case)

For every analytic $E \subset \mathbb{R}^2$ for which $\dim_H(E) = 1$ we have $\dim_H(p_{\theta}(E)) = 1$ for almost all θ .

Theorem (R.) (V=L) There exists a co-analytic $E \subset \mathbb{R}^2$ such that $\dim_H(E) = 1$ and $\dim_H(p_{\theta}(E)) = 0$ for all θ .

Marstrand's theorem (special case)

For every analytic $E \subset \mathbb{R}^2$ for which $\dim_H(E) = 1$ we have $\dim_H(p_\theta(E)) = 1$ for almost all θ .

Theorem (R.)

(V=L) There exists a co-analytic $E \subset \mathbb{R}^2$ such that $\dim_H(E) = 1$ and $\dim_H(p_{\theta}(E)) = 0$ for all θ .

Theorem (R.)

(V=L) For every $\epsilon \in [0,1)$ there exists a co-analytic $E_{\epsilon} \subset \mathbb{R}^2$ such that $\dim_H(E_{\epsilon}) = 1 + \epsilon$ and $\dim_H(p_{\theta}(E_{\epsilon})) = \epsilon$ for all θ .

How does one construct such sets? By recursion!

Example (Two-point set)

(Sketch)

- 1 Take a listing of all lines using AC;
- Build a partial solution;
- S Find a witness to extend the partial solution to the next line;
- Continue until all lines are dealt with.

How does one construct such sets? By recursion!

Example (Two-point set)

(Sketch)

- 1 Take a listing of all lines using AC;
- Build a partial solution;
- S Find a witness to extend the partial solution to the next line;
- Continue until all lines are dealt with.

But sets constructed in this way are normally very complicated!

Theorem (Vidnyánszky)

(Informal statement, V = L) If enough information can be coded into the witnesses during the recursion, then the resultant set is co-analytic.

Theorem (Vidnyánszky)

(Informal statement, V = L) If enough information can be coded into the witnesses during the recursion, then the resultant set is co-analytic.

Theorem (Lutz, Lutz)

The Hausdorff-dimension of a set of reals is determined by the (Kolmogorov) complexity of its points.

So dim_H is actually a local property!

Open questions

In fractal geometry:

- What about $\dim_H(E) < 1$?
- Packing dimension?
- In set theory:
 - What about the other extreme? Is it consistent that *every* set of reals satisfies Marstrand's theorem?

More generally:

• is there a general criterion that describes properties *P* which behave like the PSP?

Thank you