On the Definability and Complexity of Sets and Structures

Linus Richter

National University of Singapore

9 October, 2024

Definition (Classical mathematics)

Those mathematical subjects which, originally, have no connection to mathematical logic.

For example:

- Analysis
- Algebra
- Geometry
- ...

Goal

Use tools from mathematical logic to prove theorems from classical mathematics. In particular, find definable counterexamples.

A set $X \subset \mathbb{R}$ has the perfect set property if it is countable or if it contains a perfect (i.e. closed with no isolated points) subset.

(ZF) every analytic set has PSP (Souslin) (ZFC) some set does not have PSP (Bernstein) $(ZF + AD)$ every set has PSP (Mycielski, Swierczkowski) $(ZF + V = L)$ some coanalytic set does not have PSP (Gödel)

Complexity (here Borel/projective hierarchy) informs about provability (over the "base theory" ZF)!

Fix some property of sets of reals P .

Question

For which sets is P provable? What is the "simplest" set failing P ? We use descriptive set theory.

Definition (Hausdorff dimension) For $E \subset \mathbb{R}^n$

 $\dim_H(E) = \sup\{ s \, | \, \mathcal{H}^s(E) = \infty \} = \inf\{ s \, | \, \mathcal{H}^s(E) = 0 \}.$

Marstrand's Projection Theorem (J. Marstrand, 1954) Let $E \subset \mathbb{R}^2$ be analytic. For almost all θ

 $dim_H(p_\theta(E)) = min\{dim_H(E), 1\}$

where p_{θ} is the orthogonal projection onto the line θ .

Does Marstrand's Theorem provably apply to more sets?

Theorem (Davies, 1979)

Assuming CH, there exists a set $E\subset \mathbb{R}^2$ with $\dim_H(E)=1$ while, for every θ , we have dim $H(p_{\theta}(E)) = 0$.

A set $E \subset \mathbb{R}^2$ has the Marstrand property (MP) if Marstrand's theorem applies to it.

(ZF) every analytic set has MP (Marstrand, Mattila) $(ZFC + CH)$ some set does not have MP (Davies) $(ZF + AD)$? $(ZF + V = L)$?

A set $E \subset \mathbb{R}^2$ has the Marstrand property (MP) if Marstrand's theorem applies to it.

(ZF) every analytic set has MP (Marstrand, Mattila) $(ZFC + CH)$ some set does not have MP (Davies) $(ZF + AD)$? $(ZF + V = L)$ some co-analytic set does not have MP (R.)

Marstrand's theorem (special case) For every analytic $E\subset \mathbb{R}^2$ for which $\dim_H(E)=1$ we have $\dim_H(p_\theta(E)) = 1$ for almost all θ .

Marstrand's theorem (special case) For every analytic $E\subset \mathbb{R}^2$ for which $\dim_H(E)=1$ we have $\dim_H(p_\theta(E)) = 1$ for almost all θ .

Theorem (R.) $(\mathsf{V}{=}\mathsf{L})$ There exists a co-analytic $\mathsf{E}\subset\mathbb{R}^2$ such that $\mathsf{dim}_\mathsf{H}(\mathsf{E})=1$ and dim $_H(p_\theta(E)) = 0$ for all θ .

Marstrand's theorem (special case)

For every analytic $E\subset \mathbb{R}^2$ for which $\dim_H(E)=1$ we have $\dim_H(p_\theta(E)) = 1$ for almost all θ .

Theorem (R.)

 $(\mathsf{V}{=}\mathsf{L})$ There exists a co-analytic $\mathsf{E}\subset\mathbb{R}^2$ such that $\mathsf{dim}_\mathsf{H}(\mathsf{E})=1$ and dim $_H(p_\theta(E)) = 0$ for all θ .

Theorem (R.) $(V{=}L)$ For every $\epsilon \in [0,1)$ there exists a co-analytic $E_\epsilon \subset \mathbb{R}^2$ such that $\dim_H(E_{\epsilon}) = 1 + \epsilon$ and $\dim_H(p_{\theta}(E_{\epsilon})) = \epsilon$ for all θ .

How does one construct such sets? By recursion!

Example (Two-point set)

(Sketch)

- **1** Take a listing of all lines using AC;
- **2** Build a partial solution;
- **3** Find a witness to extend the partial solution to the next line;
- **4** Continue until all lines are dealt with.

How does one construct such sets? By recursion!

Example (Two-point set)

(Sketch)

- **1** Take a listing of all lines using AC;
- **2** Build a partial solution;
- **3** Find a witness to extend the partial solution to the next line;
- **4** Continue until all lines are dealt with.

But sets constructed in this way are normally very complicated!

Theorem (Vidnyánszky)

(Informal statement, $V = L$) If enough information can be coded into the witnesses during the recursion, then the resultant set is co-analytic.

Theorem (Vidnyánszky)

(Informal statement, $V = L$) If enough information can be coded into the witnesses during the recursion, then the resultant set is co-analytic.

Theorem (Lutz, Lutz)

The Hausdorff-dimension of a set of reals is determined by the (Kolmogorov) complexity of its points.

So dim_H is actually a local property!

Open questions

In fractal geometry:

- What about dim $H(E) < 1$?
- Packing dimension?

In set theory:

• What about the other extreme? Is it consistent that every set of reals satisfies Marstrand's theorem?

More generally:

 \bullet is there a general criterion that describes properties P which behave like the PSP?

Thank you