Hausdorff dimension and countable Borel equivalence relations Dino Rossegger , Th Wien joint work with Andrew Marks and Ted Slaman

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no 101026834.

Countable Borel equivalence relations

Let X be a Polish space
$$
(2^{n}, b^{n}, n)
$$
. A Borelequivalence relation
is an equivalence relation \in s.t. \in \in $\mathcal{B}(X^*X)$.
 \in is countable (CBER) if all it requires the classes are countable.

Examples: -
$$
x =_{1} y
$$
 if x is computable from y and y is complex
\n ϵ_{0} : $x \epsilon_{0} y$ $\exists n(\forall m > n) \times (m) = y(m) \times y \times z \times z^{k}$
\n ϵ_{0} : shift action of the free group on 2-generators f_{2} .
\n $x \cdot y \in \mathbb{Z}^{r_{2}}$: $x \cdot y \in \mathbb{Z}^{r_{2}}$: $x \cdot y \cdot z \cdot z \cdot z^{r_{2}}$

$$
\begin{array}{l} \text{For $6,5$ equivalence relations on X,} \text{ (e.g., Y, 6 is Borel reducible to F, $6 \leq_{B} F$} \\ \text{if there is a Borel $f: X \Rightarrow Y$ s.t. $x \in y \Leftrightarrow f(x) \in f(y)$,} \end{array}
$$

 $E\epsilon_{\text{B}}$ F intuitively tells you that from a definition of F one can get a definition ively
of E.

Countable Borel equivalence relations

Let X be a Polish space
$$
(2^{n}, b^{n}, n)
$$
. A Borelequivalence relation
is an equivalence relation \in s.t. \in \in $\mathcal{B}(X^*X)$.
 \in is countable (CBER) if all it requires the classes are countable.

Examples: -
$$
x =_{1} y
$$
 if x is computable from y and y is complex
\n ϵ_{0} : $x \epsilon_{0} y$ $\exists n(\forall m > n) \times (m) = y(m) \times y \times z \times z^{k}$
\n ϵ_{0} : shift action of the free group on 2-generators f_{2} .
\n $x \cdot y \in \mathbb{Z}^{r_{2}}$: $x \cdot y \in \mathbb{Z}^{r_{2}}$: $x \cdot y \cdot z \cdot z \cdot z^{r_{2}}$

$$
\begin{array}{l} \text{For $6,5$ equivalence relations on X,} \text{ (e.g., Y, 6 is Borel reducible to F, $6 \leq_{B} F$} \\ \text{if there is a Borel $f: X \Rightarrow Y$ s.t. $x \in y \Leftrightarrow f(x) \in f(y)$,} \end{array}
$$

 $E\epsilon_{\text{B}}$ F intuitively tells you that from a definition of F one can get a definition ively
of E.

Stuncture of \leq_{B} on CBSRS . The Bard reducibility structure of CBERs
is complicated.

Hausdorff and gange measure A gange function $g: [0, \infty) \to [0, \infty)$ is an increasing fot A gange function g: $[0, \infty)$ \rightarrow $[0, \infty)$ is an inc
that is vight continuous, g $[0, \infty)$ or and g (t) >0 if $t \neq 0$. $\bigotimes_{\sigma} S>0$, $\bigotimes H^g_{\delta}(A) = \inf \{ \sum g(\text{diam}(U_i)) : (U_i) \text{ is an open cover of } A \text{ by sets of diameter } < \delta \}.$ and define the gmeasure HP as H9(A)- lim H(A). The $s-d$ imensional Hausdorff measure $H^s= H^s$ where $q(x) = x^s$. The Hausdorff dimension of $A \leq x$ is $dim_{H}(A) = Sup \{se[0, \infty): \#^{6}(A) = \infty\}$ = $inf_{H^{5}} \{se[0, \infty): H^{7}(A) = 0\}$. Examples and Facts! xomples and Fads!
For M²⁷, H^h is usual Lebergue measure up to a constant. Lines in \mathbb{R}^{h} have dimension I. The Cantor middle thirds set has dimension Log 2/Log 3,

lf we let $s \rightarrow 1$, then the s-dimensional Hausdorff measures "approach"
Lesbegue measure.

Definition 2.1. Suppose that f and g are gauge functions. We write $f \prec g$ if $\lim_{t\to 0^+} g(d)/f(d) = 0$ (or equivalently $\lim_{t\to 0^+} f(d)/g(d) = \infty$) and say that g has higher order than f .

If we take $g \prec id$, then maybe g can detect move non-reducibility than Lebergue measure-

↓ Marks , R.,Saman**Theorem 1.4.** Suppose $g: [0, \infty) \to [0, \infty)$ is a gauge function of lower order than the identity and that E is a countable Borel equivalence relation on 2^{ω} . Then there is a closed set $A \subseteq 2^{\omega}$ such that $E \restriction A$ is smooth, and $H^g(A) > 0$. In particular, there is a closed set of Hausdorff dimension 1 such that $E \restriction A$ is smooth.

Corollary 4.3. Suppose $q: [0, \infty) \to [0, \infty)$ is a gauge function of lower order than $t \mapsto t^n$ and that E is a countable Borel equivalence relation on \mathbb{R}^n . Then there is a closed set $A \subseteq [0,1]$ such that $E \upharpoonright A$ is smooth, and $H^g(A) > 0$. In particular, there is a closed set of Hausdorff dimension n such that $E \restriction A$ is smooth.

This condition is necessary:
\n
$$
\begin{array}{c}\n\exists_{\tau} \nless \mathcal{E}_{\rho} \n\end{array}
$$
\n
$$
\begin{array}{c}\n\exists_{\tau} \nless \mathcal{E}_{\rho} \n\end{array}
$$
\n
$$
\begin{array}{c}\n\exists_{\tau} \n\end{array}
$$
\n
$$
\begin{
$$

Corollary 4.3. Suppose $g: [0, \infty) \to [0, \infty)$ is a gauge function of lower order than $t \mapsto t^n$ and that E is a countable Borel equivalence relation on \mathbb{R}^n . Then there is a closed set $A \subseteq [0,1]$ such that $E \restriction A$ is smooth, and $H^g(A) > 0$. In particular, there is a closed set of Hausdorff dimension n such that $E \restriction A$ is smooth.

Other vesults in the same voin

Vechvis, Miller **Theorem 1.1** (Hjorth-Kechris, Sullivan-Weiss-Wright, Woodin (see [KM, Theorem] 12.1)). If E is a countable Borel equivalence relation on a Polish space X, then there is a comeager invariant Borel set $C \subseteq X$ so that $E \restriction C$ is hyperfinite.

Konwei Sobols Zorpletch

Theorem 1.2 (Mathias and Soare [M, So] (see [KSZ, Theorem 8.17])). If E is a countable Borel equivalence relation on $[\omega]^\omega$, there is an $A \in [\omega]^\omega$ so that $E \restriction [A]^\omega$ *is hyperfinite.*

Theorem 1.3 ([PW, Theorem 1.2]). If E is a countable Borel equivalence relation on $(\omega)^{\omega}$, then there is an $A \in (\omega)^{\omega}$ so that $E \restriction (A)^{\omega}$ is smooth.

