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Biographical: T min
Overview: 5 min

Frames and paradigmatic examples: 7 + 7
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Properties
e aconceptin knowledge representation

* represent conceptual structure or prototypical situations e.g.
birthday celebration, restaurant.

 roles and participants (slots and fillers) e.g. waiter, diners,

food, ...
Wh at alre e organized in an inheritance hierarchy typed feature structures
HEINER
Usage

* e.g., in cognitive linguistics and artificial intelligence

* explain how receiver completes information conveyed by
sender

* linguistic project: FrameNet database (1,200 semantic frames)

* Originates from MIT




Frames and Framing

Frame: BUYING

[B“l'rer John| bought [G““"s a beautiful medieval book] [Ti"‘e yesterday] .

Frame: SELLING

[>eller Petra] sold [©°°% a beautiful medieval book] to ["Y¢" John]
for [M‘}”Ef" twenty Euros] .




Frames and feature structures

(2)

_bulﬁ‘
BUvER!
GooDs!
TIME
SELLER
MONEY

[sell
SELLER!
BUYER!
Goops!
TIME
MONEY

PURPOSE

PURPOSE

Il John]|

[a beautiful medieval book])
[vesterday]
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[[twenty Euros]|

If?.!f.f'j'?l’i.‘.‘l”

[ buy
BUYER!
GooDs!

TIME

SELLER
MONEY

[ sell
SELLER!
BUYER!
GOODS!
TIME
MONEY

PURPOSE

PURPOSE

J

b

[ point-in-time
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A look into the framenet

Frame Index

ABCDEFGHIJKLMNOPQRS

TUVWXYZ

Abandonment
Abounding_with
Absorb_heat
Abundance
Abusing
Access_scenario
Accompaniment

Accomplishment
Accoutrements

Accuracy
Achieving_first
Active_substance
Activity
Activity_abandoned_state
Activity_done_state
Activity_finish
Activity_ongoing
Activity_pause
Activity _paused_state
Activity _prepare
Activity ready_state
Activity _resume
Activity_start
Activity_stop
Actually occurring entity
Addiction
Adding_up
Adducing

Adjacency

Adjusting
Adopt_selection
Aesthetics

Commercial transaction

Definition:

Lexical Unit Index

These are words that describe basic commercial transactions involving a and a who exchange Wi and [€RRRE. The individual words vary in the frame element
realization patterns. For example, the typical patterns for the verbs buy and sell are: BUYER buys GOODS from the SELLER for MONEY. SELLER sells GOODS to the BUYER for

MONEY.

[Hisj$20JTRANSACTION had been very smooth.

FEs:

Core:

Goods [Gds
IMone ] % \

Non-Core:

Frame-frame Relations:

The wants the and offers Vi) to a in exchange for them.
The FE Goods is anything (including labor or time, for example) which is exchanged for Money in a transaction.

Money is the thing given in exchange for Goods in a transaction.

The has possession of the and exchanges them for Wit from a Elygg.

The means by which a commercial transaction occurs.
Price or payment per unit of Goods.

The Unit of measure of the Goods according to which the exchange value of the Goods (or services) is set. Generally, it occurs in a by-PP.



A look into the framenet

Reciprocality

--------- - i Seis Py
-— - ' ~ -~
e - ~ -
o - ~ ok TR
- ~ ” '
- - -
: 14 children : . S , ; .
Pre_transfer wotal Transfer Commercial_transaction Businesses Having_commercial_agreement
a
s \
2 \
- . ‘ b
Commerce_goods-transfer Commerce_money-transfer

e
-
-
-
A
o
Commerce_buy Commerce_pay Commerce_collect

» Screenshot https://framenet.icsi.berkeley.edu/fndrupal/FrameGrapher
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Frames in Mathematical Texts

* Goal: Model proofs and proof methods

* Types of frames: (define types of slots)
Ontological: type of mathematical object
e.g. Circle, slots: center, radius, diameter, circumference, ...

e.g. Vector Space, slots: zero, unit, field, dimension, ...

 Structural: part of proofs
e.g. Induction, slots: induction variable, hypothesis, step, domain,....

e.g. Extremal Proof, slots: object type, initial object, parameter




The Induction
Frame

induction

[NDUCTION-DOMAIN

[NDUCTION-VARIABLE

ASSERTION

ProOF

inductive-type
(@) | BASE-CONSTRUCTORS list-of( base-constructor)
RECURSIVE-CONSTRUCTORS list-of(recursive-constructor)

(variable

NAME symbolic
_TYFE [@

Ve .
-'inductz'on-pmof

induction-signature

- 21
INDUCTION-SIGNATURE | D TEP-FUNCTIONS @)

BASE-CONDITIONS

[proved-under-hypotheses
HYPOTHESES

[proved-under-hypotheses

THESIS

ASSERTION A

INDUCTION-STEP NPT
case-distinction

Proor

CASE-CONDITIONS <, )
CASE-PROOFS <, >

CASE-PROOFS ([

INDUCTION-HYPOTHESES [i1] list-of(sentence)

(M {(@=0b(...) for be)
| INDUCTION-CONDITIONS M {@=7(.-) for rcmm)

THESIS
ASSERTION AER
BAsE-CASE case-distinction
CASE-CONDITIONS
Proor
CASE-PROOFS piyved
ASSERTION [@]: bh =@

HYPOTHESES [icend] : ((c AR) forehe zip(,)>

CASE-CONDITIONS

proved
ASSERTION @: th=03

f




Proof. First, the second statement is indeed more precise than the first: let & > 1 be such that
% = 0but fE=1 £ 0 there exists v # 0 such that f%~1(v) # 0, and we obtain k < n by applying
the second result to this vector v. We now prove the second claim. Assume therefore that v # 0
and that f*(v) = 0 but f5~'(v) £ 0. Let 1o, .. ., 7x—1 be elements of K such that

fv+---+ l'k_lfk_llsr'd](v) =0.
Apply £%71 to this relation; since f*(v) = ... = FF*2sil(y) = 0, we get

nf ) = ) Faff o)+ a0 = 0,

and therefore 1 f¥~!(v) = 0. Since f*~1(v) was assumed to be non-zero, it follows that 7; = 0.

Now repeating this argument, but applying f¥~2 to the linear relation (and using the fact that
t1 =0), we getry = 0.

Then similarly we derive by induction that #; = O for all i, proving the linear independence
stated.

induction

InpucTion-DomaN

INDUCTION-VARIABLE

ASSERTION

Proor

inductive-type
[@| Base-CoNsTRUCTOR

REcursivE-CONSTRUCTOR

variable
NaMmE syrnbolic
Tyee [d

VE. @

induction-proof

[NDUCTION-SIGNATURE

Basg-Casg

[NDUCTION-STEP

base-constructor

recursive-constructor

induction-signature

InpucTION-HYPOTHESIS  [[i] senterce
(M ra
(Mym=

@ () m=rm..)|

STEP-FUuNCTION
Base-CoNDITION
INpUCTION-CONDITION

proved-under-hypothesis
HyPOTHESIS
THEsIS Ed}
ASSERTION =@

Proor list(proaf-step Vv assumption V definition V goal)

-pmred-under-h vpothesis
HypoTuesis  [icond]: (fice] A [iR])
THEsIs

ASSERTION =@

Proor list(proaf-step Vv assumption V definition V goal )
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INDUCTION-VARIABLE

ASSERTION

Proor
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NaMmE syrnbolic
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Basg-Casg

base-constructor

recursive-constructor
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Base-CoNDITION (ME=
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Proor
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Aspects of Understanding (1/2)

Understanding a Proof as Constructing an Object

* Proof Concept O: object representing a logical deduction of the
theorem

* Understanding O: constructing the gapless formal object



Aspects of Understanding (2/2)

* Understanding a Proof as Text Processing
* Proof Concept T: text outlining a proof structure or idea (T)

* Understanding T: has components, notably:

* TE: interpreting referring expressions: mathematical areas / objects and
relations,

* TJ: understanding the justification of the proof steps presented in T,
* TB: the bridging of deductive gapsin T,
* TR: recognition of the proof method,

* TC: understanding the choice(s) of the way of proving in T among possible
alternatives



Context and extremal proofs
— preliminary slots

* Scale: How are we measuring it?
* Kind of extremality: Is it minimal or maximal?

* Principle evoked for existential claim about extremal
object:
* |least upper bound
* least number principle



Context and extremal proofs — interaction /
ontological frames

* Das Extremalprinzip setzt also einen Kontext voraus, in dem minimale
oder maximale Objekte existieren.” Carl 2017

 Variations of extremal proofs

e Carl: variation triggered by (Engel’s “three well-known facts”), e.g.,
domain natural numbers: triggers least number principle
domain subset of reals: triggers least upper bound principle or

largest lower bound principle



extremality

e S

maximality extr-construction extr-contradiction minimality extremality-natural

[ > O AT

max-construction max-contradiction min-construction min-contradiction minimality-natural

‘ /)</

min-construction-natural min-contradiction-natural




Example 3: Research Level

* The aim of this thesis is to present new method based on algebraic and
analytic tools — the celebrated method of flag algebras invented by
Razborov [67]. This method provides a uniform framework for standard
counting techniques used in extremal combinatorics. It is inspired by
the theory of dense graph limits, on which we focus in Chapter 4.
Despite the fact that the method is quite new, it has been successfully
applied to various problems in extremal combinatorics, giving solutions
to many long open-standing problems. In particular in Turan-type
problems in graphs [23, 35, 39, 41, 61, 63, 64, 70, 74, 76], 3-graphs [7,
27,28, 32,62, 69], and hypercubes [5, 8], Caccetta-Haggkvist
conjecture [42, 71], extremal problems in a colored setting [6, 22, 38,
50], and in geometry [51]. More details on these applications can be
found in a recent survey of Razborov [68]. (Grzesik 2014, p. 2)
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Bridges in Mathematics

- Hillel Furstenberg and Gregory Margulis - “for
pioneering the use of methods from probability and
dynamics in group theory, number theory and
combinatorics”.

- Akshay Venkatesh - “for his synthesis of analytic
number theory, homogeneous dynamics, topology, and
representation theory, which has resolved long-standing
problems in areas such as the equidistribution of
arithmetic objects.”

- Langlands Program, Lafforgue in 2002 or Ngo in 2010.



A graph: Algebraic vs. Combinatorical
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A part of the
frame
hierarchy of
mathematical
objects,
containing
both
topological
spaces and
graphs
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Graphs as topological objects
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Future Work

Linguistic: Annotation Workflow => More Frames

* Math Education: Are frames usefull in teaching?

Philosophical

* Question of style?

* Understanding in the hermeneutic tradition, why did the author wrote this? Embedding
in socio-historical context

Computer Science: Implementation in theorem proving software
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