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What is a (maximal) cofinitary group?
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(Maximal) cofinitary groups

Definition

A permutation on ω is called finitary if it only moves finitely many points.

Dually, a permutation is called cofinitary if only finitely many points are
not moved.

Observation

The set of all finitary permutations is a group (the unique maximal group).
However, the set of all cofinitary permutations with the identity is not a
group and indeed there are many maximal cofinitary groups.
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Sizes of maximal cofinitary groups

Definition

A subgroup G ⊆ Sω is called cofinitary if every g ∈ G \ {id} is cofinitary.
It is called maximal if it is maximal with respect to inclusion.

Theorem (Truss, 1985 [10]; Adeleke, 1988 [1])

Every countable cofinitary group is not maximal.

Theorem (Neumann)

There are cofinitary groups of size 2ℵ0 .
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Cofinitary groups and combinatorial set theory

Thus, from the perspective of combinatorial set theory we may study the
possible sizes of maximal cofinitary groups:

Definition

ag := minimal size of a maximal cofinitary group.

We have just seen that ℵ0 < ag ≤ 2ℵ0 , i.e. ag is a cardinal characteristic in
the usual sense. In fact:

Theorem (Brendle, Spinas, Zhang, 2000 [2])

non(M) ≤ ag.
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Tightness
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Separating ag from other invariants

We want to construct models in which

ag = ℵ1 < ℵ2 = x

holds for other cardinal characteristics x.

Idea (Tightness)

We want to define a combinatorial strengthening of the maximality of a
cofinitary group, which is preserved by a large class of forcing notions, e.g.
by countable support iterations of certain proper forcings.
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Tightness for other families

The idea of such a combinatorial strengthening of maximality for this pur-
pose has already been successfully developed for other types of combinatorial
families:

1 Maximal almost disjoint (mad) families → a
(Guzmán, Hrušák, Téllez, 2020 [7])

2 Maximal eventually different (med) families → ae

(Fischer, Switzer, 2023 [5])

3 Maximal eventually different families of permutations → ap

(Fischer, Switzer, 2023 [5])

It turns out that the last notion of tightness may also be used in the context
of cofinitary groups → ag.

Lukas Schembecker (Uni Hamburg) On cofinitary groups 07.10.2024 8 / 23



Tightness for other families

The idea of such a combinatorial strengthening of maximality for this pur-
pose has already been successfully developed for other types of combinatorial
families:

1 Maximal almost disjoint (mad) families → a
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(Guzmán, Hrušák, Téllez, 2020 [7])

2 Maximal eventually different (med) families → ae

(Fischer, Switzer, 2023 [5])

3 Maximal eventually different families of permutations → ap

(Fischer, Switzer, 2023 [5])

It turns out that the last notion of tightness may also be used in the context
of cofinitary groups → ag.

Lukas Schembecker (Uni Hamburg) On cofinitary groups 07.10.2024 8 / 23



Tightness for other families

The idea of such a combinatorial strengthening of maximality for this pur-
pose has already been successfully developed for other types of combinatorial
families:

1 Maximal almost disjoint (mad) families → a
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Preserving tightness

Definition

Let G be a cofinitary group. Then we say G is tight if G is tight as an
eventually different family of permutations.

Theorem (Fischer, Switzer, 2023 [5])

Assume F is a tight family of permutations and 〈Pα, Q̇α | α < γ〉 is a
countable support iteration of proper forcings such that for every α < γ
we have

Pα Q̇α strongly preserves the tightness of F .

Then Pγ strongly preserves the tightness of F .

Theorem (Fischer, Switzer, 2023 [5])

Miller forcing, Miller partition forcing, Shelah’s forcing QI , . . . all strongly
preserve the tightness of every tight family of permutations.
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Separating ag from other invariants

Theorem (Fischer, S., Schrittesser, 2023 [3])

Under MA(σ-centered) every cofinitary group of size <2ℵ0 can be
embedded into a tight cofinitary group of size 2ℵ0 .

Theorem (Fischer, S., Schrittesser, 2023 [3])

The following constellations are consistent with a tight witness for ag:

1 ag = d = aT < c = ℵ2,

2 ag < d = aT = c = ℵ2,

3 ag = d < aT = c = ℵ2,

4 ag = i < u = c = ℵ2,

5 . . .
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Optimal projective complexity
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Optimal witnesses for ag

We have seen that ZFC implies the existence of maximal cofinitary groups.
What is the optimal projective complexity for such groups?

Observation

In L there is a maximal cofinitary group with a Σ1
2-set of generators.

Theorem (Gao, Zhang, 2008 [6])

In L there is a maximal cofinitary group with a Π1
1-set of generators.

Theorem (Kastermans, 2009 [9])

In L there is a Π1
1 maximal cofinitary group.
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Optimal witnesses for ag

Theorem (Horowitz, Shelah, 2016 [8])

ZF: There is a Borel maximal cofinitary group.

Theorem (Fischer, Schrittesser, Törnquist, 2017 [4])

In L there is a Π1
1 Cohen-indestructible maximal cofinitary group.

Corollary (Fischer, Schrittesser, Törnquist, 2017 [4])

The following constellation is consistent with a Π1
1 witness for ag:

ℵ1 = ag = b < d = 2ℵ0
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Optimal witnesses for ag

Theorem (Fischer, S., Schrittesser, 2023 [3])

In L there is a Π1
1 tight cofinitary group.
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Corollary (Fischer, S., Schrittesser, 2023 [3])

All models above may also contain a ∆1
3-definable well-order of the reals.
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Coding into orbits
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Constructing a cofinitary group with a Π1
1-set of generators

The construction in L of a tight cofinitary group with a Π1
1-set of generators

boils down to the following inductive construction of 〈Gα | α < ℵ1〉:

1 Given a countable cofinitary group Gα ∈ Lδα and a real number r we
need to find a cofinitary f ∈ S∞ \ Gα, such that Gα+1 := 〈Gα ∪ {f }〉
is a cofinitary group and r can be decoded from f .

2 In order to find such an f we will use ‘forcing’ over the countable
model Lδ, i.e. f will be a generic for Zhang’s forcing over Lδ.

3 Using the ∆1
2 well-order in L we can make sure that f is picked

uniquely in some countable Lδα+1 .

4 Finally G :=
⋃
α<ℵ1

should be a tight cofinitary group.
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Constructing a cofinitary group with a Π1
1-set of generators

In summary we have adapt Zhang’s forcing, so that its generic real fgen

codes a real r and the iteration yields a tight cofinitary group.

Theorem (Fischer, S., Schrittesser, 2023 [3])

Iterating Zhang’s forcing yields a tight cofinitary group.

Previous coding techniques directly coded r into the function values of the
generic real fgen. However, in order to obtain a tight cofinitary group we
had to come up with a more flexible coding technique.
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Orbits of permutations

Given a permutation f ∈ Sω we may consider the lengths of its orbits:

Definition

An orbit of f is a minimal non-empty subset of ω closed under the
applications of f and f −1.

Hence, any permutation f ∈ Sω partitions ω into its finite and infinite orbits:

. . . 2 42 5 . . .

1 9 7

4

0 6

38
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Orbits of the Zhang-generic

Proposition (Fischer, S., Schrittesser, 2023 [3])

The Zhang generic fgen only has finite orbits.

Definition

Given f ∈ ωω let Of be the set of all orbits of f . There is a natural
well-order on Of defined for O,P ∈ Of by O < P iff min(O) < min(P).
Assume f only has finite orbits; it follows that f has infinitely many orbits.
Then, we define its orbit coding function of : ω → 2 by

of (n) := (|On| mod 2),

where On is the n-th element in the well-order of Of .
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Then, we define its orbit coding function of : ω → 2 by

of (n) := (|On| mod 2),

where On is the n-th element in the well-order of Of .
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A Π1
1 tight cofinitary group

Theorem (Fischer, S., Schrittesser, 2023 [3])

Zhang’s forcing may be adapted so that r = ofgen and iterating the forcing
yields a cofinitary group.

Corollary (Fischer, S., Schrittesser, 2023 [3])

In L there is a tight cofinitary group with a Π1
1-set of generators.

With the coding above we do not obtain that the full group is Π1
1. However,

one may adapt the orbit coding function, so that every new real in the group
〈G ∪ {fgen}〉 codes r .

Proposition (Fischer, S., Schrittesser, 2023 [3])

For every k the Zhang generic fgen only has finitely many orbits of length k.
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Thank you for your attention!
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