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Introduction – Constraint Satisfaction Problems

Let A be a finite structure.

CSP(A) ≔ {I ∣ I finite, I has a homomorphism into A}
For all finite A: CSP(A) is in NP.
Theorem (Bulatov, Zhuk 2017): P-NP intermediate CSPs
do not exist.
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Exploring the Upper Levels of PDigraphs

Theorem (Meyer, Starke 2024): The lower covers of in the
poset of all finite structures are T3, S(G1),S(G2), . . . , where
G1,G2, . . . are all finite simple groups.
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Barto, Kozik, Maróti, and Niven 2009 39
Fischer 2015 30
Tatarko 2019 26

10 / 13



Smallest Hard Trees

n trees core trees total time

10 24635 36 13ms
11 108968 85 33ms
12 492180 226 84ms
13 2266502 578 236ms
14 10598452 1569 657ms
15 50235931 4243 2.0 s
16 240872654 11848 5.7 s
17 1166732814 33104 16.6 s
18 5702001435 94221 49.3 s
19 28088787314 269455 2.5min
20 139354922608 779268 7.4min
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Theorem (Bodirsky, Buĺın, Starke, Wernthaler 2023): The
smallest trees with an NP-hard CSP have 20 vertices
(assuming P ≠ NP).
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