

Digraphs modulo primitive positive constructability

Florian Starke

9.10.2024

Let $\mathbb A$ be a finite structure.

Let $\mathbb A$ be a finite structure.

 $\mathsf{CSP}(\mathbb{A}) \coloneqq \{\mathbb{I} \mid \mathbb{I} \text{ finite, } \mathbb{I} \text{ has a homomorphism into } \mathbb{A}\}\$

Let \mathbbm{A} be a finite structure.

 $\mathsf{CSP}(\mathbb{A}) \coloneqq \{\mathbb{I} \mid \mathbb{I} \text{ finite, } \mathbb{I} \text{ has a homomorphism into } \mathbb{A}\}\$

3COL = CSP(Å)

Let \mathbbm{A} be a finite structure.

 $\mathsf{CSP}(\mathbb{A}) \coloneqq \{\mathbb{I} \mid \mathbb{I} \text{ finite, } \mathbb{I} \text{ has a homomorphism into } \mathbb{A}\}\$

3COL = CSP(Å)

Let \mathbbm{A} be a finite structure.

 $CSP(\mathbb{A}) \coloneqq \{\mathbb{I} \mid \mathbb{I} \text{ finite, } \mathbb{I} \text{ has a homomorphism into } \mathbb{A}\}\$

3COL = CSP(Å)

Let \mathbbm{A} be a finite structure.

 $\mathsf{CSP}(\mathbb{A}) \coloneqq \{\mathbb{I} \mid \mathbb{I} \text{ finite, } \mathbb{I} \text{ has a homomorphism into } \mathbb{A}\}\$

For all finite \mathbb{A} : CSP(\mathbb{A}) is in NP.

Let \mathbbm{A} be a finite structure.

Let \mathbbm{A} be a finite structure.

Let $\mathbb A$ be a finite structure.

Let \mathbbm{A} be a finite structure.

 $CSP(\mathbb{A}) := \{\mathbb{I} \mid \mathbb{I} \text{ finite, } \mathbb{I} \text{ has a homomorphism into } \mathbb{A}\}$ For all finite \mathbb{A} : $CSP(\mathbb{A})$ is in NP. **Conjecture** (Feder, Vardi 1999): P-NP intermediate CSPs do not exist.

Let \mathbbm{A} be a finite structure.

 $CSP(\mathbb{A}) := \{\mathbb{I} \mid \mathbb{I} \text{ finite, } \mathbb{I} \text{ has a homomorphism into } \mathbb{A}\}$ For all finite \mathbb{A} : $CSP(\mathbb{A})$ is in NP. **Theorem** (Bulatov, Zhuk 2017): P-NP intermediate CSPs do not exist.

$$\mathbb{A} \leq_{\mathsf{pp}} \mathbb{B} \qquad \Rightarrow \qquad \mathsf{CSP}(\mathbb{B}) \leq_{\mathsf{log-space}} \mathsf{CSP}(\mathbb{A})$$

$$\mathbb{A} \leq_{\mathsf{pp}} \mathbb{B} \qquad \Rightarrow \qquad \mathsf{CSP}(\mathbb{B}) \leq_{\mathsf{log-space}} \mathsf{CSP}(\mathbb{A})$$

$$\mathbb{A} \leq_{\mathsf{pp}} \mathbb{B} \qquad \Rightarrow \qquad \mathsf{CSP}(\mathbb{B}) \leq_{\mathsf{log-space}} \mathsf{CSP}(\mathbb{A})$$

Goal: Understand the complexity of CSPs within P.

Goal: Understand the poset of finite structures ordered by \leq_{pp} .

Goal: Understand the poset of finite structures ordered by \leq_{pp} . **Theorem** (Bulín, Delic, Jackson, Niven 2015): For all structures \mathbb{A} there exists a digraph \mathbb{G} : CSP(\mathbb{A}) $\equiv_{\mathsf{log-space}} \mathsf{CSP}(\mathbb{G})$.

Goal: Understand the poset of finite structures ordered by \leq_{pp} . **Theorem** (Bulín, Delic, Jackson, Niven 2015): For all structures \mathbb{A} there exists a digraph \mathbb{G} : CSP(\mathbb{A}) $\equiv_{\mathsf{log-space}} \mathsf{CSP}(\mathbb{G})$.

Goal: Understand the poset of finite digraphs ordered by \leq_{pp} . **Theorem** (Bulín, Delic, Jackson, Niven 2015): For all structures \mathbb{A} there exists a digraph \mathbb{G} : CSP(\mathbb{A}) $\equiv_{log-space}$ CSP(\mathbb{G}).

Overview – Thesis

Overview – Thesis

PP-Constructions – Example 1

PP-Constructions – Example 1

PP-Constructions – Example 1

$$\Phi_E(x,y) = \exists z. \ x \to z$$

$$\land z \to y$$
$$\Phi_E(x,y) = \exists z. \ x \to z$$
$$\land z \to y$$

$$\Phi_E(x,y) = \exists z. \ x \to z$$
$$\land z \to y$$

$$\mathbb{C}_{10} \leq_{\mathsf{pp}} \mathbb{C}_5$$

$$\Phi_E\begin{pmatrix}x_1, x_2, x_3, \\ y_1, y_2, y_3\end{pmatrix} = x_1 \rightarrow y_3$$

$$\wedge x_2 = y_1$$

$$\wedge x_3 = y_2$$

$$\Phi_E\begin{pmatrix}x_1, x_2, x_3, \\ y_1, y_2, y_3\end{pmatrix} = x_1 \rightarrow y_3$$

$$\wedge x_2 = y_1$$

$$\wedge x_3 = y_2$$

$$\Phi_{E}\begin{pmatrix}x_{1}, x_{2}, x_{3}, \\ y_{1}, y_{2}, y_{3}\end{pmatrix} = x_{1} \rightarrow y_{3}$$

$$\wedge x_{2} = y_{1}$$

$$\wedge x_{3} = y_{2}$$

$$\begin{pmatrix}y_{1}, y_{2}, y_{3} \\ y_{1}, y_{2}, y_{3}\end{pmatrix} = x_{1} \rightarrow y_{3}$$

$$\begin{pmatrix}y_{2}, y_{3} \\ y_{3}$$

4-0

40

$$\Phi_E\begin{pmatrix}x_1, x_2, x_3, \\ y_1, y_2, y_3\end{pmatrix} = x_1 \rightarrow y_3$$
$$\land x_2 = y_1$$
$$\land x_3 = y_2$$

$$\Phi_E\begin{pmatrix}x_1, x_2, x_3, \\ y_1, y_2, y_3\end{pmatrix} = x_1 \rightarrow y_3$$
$$\land x_2 = y_1$$
$$\land x_3 = y_2$$

$$\mathbb{C}_3 \leq_{pp} \mathbb{C}_9$$

For all structures \mathbb{A} : $\overset{\wedge}{\longrightarrow} \leq_{pp} \mathbb{A} \leq_{pp}$

For all structures \mathbb{A} : $\overset{\wedge}{\longrightarrow} \leq_{pp} \mathbb{A} \leq_{pp}$

Theorem (Barto, Kozik, Niven 2009): Let \mathbb{G} be a smooth digraph. Then exactly one of the following is true:

2. ${\mathbb G}$ is homomorphically equivalent to a disjoint union of cycles.

Theorem (Barto, Kozik, Niven 2009): Let \mathbb{G} be a smooth digraph. Then exactly one of the following is true:

1. **G** ≡_{pp} Å or

2. \mathbb{G} is homomorphically equivalent to a disjoint union of cycles. **Observations:** For all $n, k \ge 1$

$$\mathbb{C}_{n \cdot k} \leq_{\mathrm{pp}} \mathbb{C}_n \qquad \qquad \mathbb{C}_{n, n \cdot k} \equiv_{\mathrm{pp}} \mathbb{C}_n$$

Theorem (Barto, Kozik, Niven 2009): Let \mathbb{G} be a smooth digraph. Then exactly one of the following is true:

1. $\mathbb{G} \equiv_{\mathsf{pp}} \overset{\wedge}{\hookrightarrow} \mathsf{or}$

2. \mathbb{G} is homomorphically equivalent to a disjoint union of cycles. **Observations:** For all $n, k \ge 1$

 $\mathbb{C}_{n \cdot k} \leq_{\mathrm{pp}} \mathbb{C}_n \qquad \qquad \mathbb{C}_{n, n \cdot k} \equiv_{\mathrm{pp}} \mathbb{C}_n$

Theorem (Barto, Kozik, Niven 2009): Let \mathbb{G} be a smooth digraph. Then exactly one of the following is true:

1. **G** ≡_{pp} Å or

2. \mathbb{G} is homomorphically equivalent to a disjoint union of cycles. **Observations:** For all $n, k \ge 1$

 $\mathbb{C}_{n \cdot k} \leq_{\mathrm{pp}} \mathbb{C}_n \qquad \qquad \mathbb{C}_{n, n \cdot k} \equiv_{\mathrm{pp}} \mathbb{C}_n$

Theorem (Barto, Kozik, Niven 2009): Let \mathbb{G} be a smooth digraph. Then exactly one of the following is true:

1. $\mathbb{G} \equiv_{\mathsf{pp}} \overset{\wedge}{\hookrightarrow} \mathsf{or}$

2. \mathbb{G} is homomorphically equivalent to a disjoint union of cycles. **Observations:** For all $n, k \ge 1$

 $\mathbb{C}_{n \cdot k} \leq_{\mathrm{pp}} \mathbb{C}_n \qquad \qquad \mathbb{C}_{n, n \cdot k} \equiv_{\mathrm{pp}} \mathbb{C}_n$

Theorem (Bodirsky, Starke, Vucaj 2021): Let \mathbb{G} be a smooth digraph. Then exactly one of the following is true:

2. \mathbb{G} there is a union of cycles \mathbb{C} whose cycle lengths are square-free such that $\mathbb{G} \equiv_{pp} \mathbb{C}$.

Theorem (Bodirsky, Starke, Vucaj 2021): Let \mathbb{G} be a smooth digraph. Then exactly one of the following is true:

C there is a union of cycles C whose cycle lengths are square-free such that C ≡_{pp} C.

Theorem (Bodirsky, Starke 2021): The lower covers of \rightarrow are $\mathbb{T}_3, \mathbb{C}_2, \mathbb{C}_3, \mathbb{C}_5, \dots$

Theorem (Meyer, Starke 2024): The lower covers of \rightarrow in the poset of all finite structures are \mathbb{T}_3 , $\mathbb{S}(G_1)$, $\mathbb{S}(G_2)$,..., where G_1, G_2, \ldots are all finite simple groups.

author	year	size
Gutjahr, Welzl, and Woeginger	1992	287

author	year	size
Gutjahr, Welzl, and Woeginger	1992	287
Gutjahr	1991	81
Hell, Nešetřil, and Zhu	1996	45
Barto, Kozik, Maróti, and Niven	2009	39
Fischer	2015	30
Tatarko	2019	26
Smallest Hard Trees

п	trees	core trees	total time
10	24635	36	13 ms
11	108968	85	33 ms
12	492180	226	84 ms
13	2266502	578	236 ms
14	10598452	1569	657 ms
15	50235931	4243	2.0 s
16	240872654	11848	5.7 s
17	1166732814	33104	16.6 s
18	5702001435	94221	49.3 s
19	28088787314	269455	2.5 min
20	139354922608	779268	7.4 min

Theorem (Bodirsky, Bulín, Starke, Wernthaler 2023): The smallest trees with an NP-hard CSP have 20 vertices (assuming $P \neq NP$).

Theorem (Bodirsky, Bulín, Starke, Wernthaler 2023): The smallest trees with an NP-hard CSP have 20 vertices (assuming $P \neq NP$).

Theorem (Bodirsky, Bulín, Starke, Wernthaler 2023): The smallest trees with an NP-hard CSP have 20 vertices (assuming $P \neq NP$).

What did we learn?

What did we learn?

What did we learn?

Some Open Problems

- Does \$\mathcal{P}_{Digraphs}\$ have infinite ascending chains?
- ▶ Is 𝔅_{Digraphs} a lattice?
- What complexity classes within P are realised by CSPs?

What did we learn?

Some Open Problems

- Does \$\varphi_{Digraphs}\$ have infinite ascending chains?
- ▶ Is 𝔅_{Digraphs} a lattice?
- What complexity classes within P are realised by CSPs?

Thank You!