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Classifying first order theories, i.e. distinguishing between tame
structures (e.g. the complex field) and wild structures (e.g. the ring
of integers), and provide tools to analyse structures which fall into
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Analyzing mathematical phenomenon via this approach, Model theory
allows results to be transferred between different structures and identifies
common features across various mathematical frameworks.
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Consider the rational numbers Q and the real numbers R.
What kind of structures exist?

(Q) and (R) viewed as sets in L∅ = {∅}.
(Q, <) and (R, <) viewed as orders in L< = {<}
(Q, ·, 1)/(Q,+, 0) and (R, ·, 1)/(R,+, 0) viewed as groups in Lg .
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Consider the rational numbers Q and the real numbers R.
What kind of structures exist?

(Q) and (R) viewed as sets in L∅ = {∅}.
(Q, <) and (R, <) viewed as orders in L< = {<}
(Q, ·, 1)/(Q,+, 0) and (R, ·, 1)/(R,+, 0) viewed as groups in Lg .

(Q,+, ·, 0, 1) and (R,+, ·, 0, 1) viewed as fields in
Lring = {+, ·, 0, 1}.
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Example of structures

Consider the rational numbers Q and the real numbers R.
What kind of structures exist?

(Q) and (R) viewed as sets in L∅ = {∅}.
(Q, <) and (R, <) viewed as orders in L< = {<}
(Q, ·, 1)/(Q,+, 0) and (R, ·, 1)/(R,+, 0) viewed as groups in Lg .

(Q,+, ·, 0, 1) and (R,+, ·, 0, 1) viewed as fields in
Lring = {+, ·, 0, 1}.
. . .

Question

Given one of the languages above, how different are the corresponding
structures on Q or R from the point of view of first order logic? In other
words, are there first order sentences that hold in one and not the other?
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Consider the rational numbers Q and the real numbers R.
What kind of structures exist?

(Q) and (R): Infinite sets

(Q, <) and (R, <) viewed as orders in L< = {<}
(Q, ·, 1)/(Q,+, 0) and (R, ·, 1)/(R,+, 0) viewed as groups in Lg .

(Q,+, ·, 0, 1) and (R,+, ·, 0, 1) viewed as fields in
Lring = {+, ·, 0, 1}.
. . .
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Given one of the languages above, how different are the corresponding
structures on Q or R from the point of view of first order logic? In other
words, are there first order sentences that hold in one and not the other?
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Example of structures

Consider the rational numbers Q and the real numbers R.
What kind of structures exist?

(Q) and (R): Infinite sets

(Q, <) and (R, <): Dense linear orders without endpoints

(Q, ·, 1)/(Q,+, 0) and (R, ·, 1)/(R,+, 0) viewed as groups in Lg .

(Q,+, ·, 0, 1) and (R,+, ·, 0, 1) viewed as fields in
Lring = {+, ·, 0, 1}.
. . .

Question

Given one of the languages above, how different are the corresponding
structures on Q or R from the point of view of first order logic? In other
words, are there first order sentences that hold in one and not the other?
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Example of structures

Consider the rational numbers Q and the real numbers R.
What kind of structures exist?

(Q) and (R): Infinite sets

(Q, <) and (R, <): Dense linear orders without endpoints

(Q, ·, 1)/(Q,+, 0) and (R, ·, 1)/(R,+, 0) viewed as groups in Lg .

(Q,+, ·, 0, 1) and (R,+, ·, 0, 1) viewed as fields in
Lring = {+, ·, 0, 1}.
R |= ∃x : x2 = (1 + 1) and Q ∕|= ∃x : x2 = (1 + 1)

Question

Given one of the languages above, how different are the corresponding
structures on Q or R from the point of view of first order logic? In other
words, are there first order sentences that hold in one and not the other?
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Let L be a language and (M, . . . ) and (N, . . . ) be any two L–structures.
We will denote by T (M) the theory of M, i.e. the collection of all
first order sentences that are true in (M, . . . ).
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Let L be a language and (M, . . . ) and (N, . . . ) be any two L–structures.
We will denote by T (M) the theory of M, i.e. the collection of all
first order sentences that are true in (M, . . . ).

Let T be any L–theory, i.e. a collection of consistent L–formulas.
An L–structure M is called a model of T , denote by M |= T , if all
sentences in T hold in M, i.e. for all sentences φ ∈ T , M |= φ.
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Let L be a language and (M, . . . ) and (N, . . . ) be any two L–structures.
We will denote by T (M) the theory of M, i.e. the collection of all
first order sentences that are true in (M, . . . ).

Let T be any L–theory, i.e. a collection of consistent L–formulas.
An L–structure M is called a model of T , denote by M |= T , if all
sentences in T hold in M, i.e. for all sentences φ ∈ T , M |= φ.

We say that (M, . . . ) is elementary equivalent to (N, . . . ),
denoted by M ≡ N, if T (M) = T (N).
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Let L be a language and (M, . . . ) and (N, . . . ) be any two L–structures.
We will denote by T (M) the theory of M, i.e. the collection of all
first order sentences that are true in (M, . . . ).

Let T be any L–theory, i.e. a collection of consistent L–formulas.
An L–structure M is called a model of T , denote by M |= T , if all
sentences in T hold in M, i.e. for all sentences φ ∈ T , M |= φ.

We say that (M, . . . ) is elementary equivalent to (N, . . . ),
denoted by M ≡ N, if T (M) = T (N).

Example

(Q, <) ≡ (R, <) as dense linear order, but (Q,+, ·, 0, 1) ∕≡ (R,+, ·, 0, 1).
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Notations

Let L be a language and (M, . . . ) and (N, . . . ) be any two L–structures.
We will denote by T (M) the theory of M, i.e. the collection of all
first order sentences that are true in (M, . . . ).

Let T be any L–theory, i.e. a collection of consistent L–formulas.
An L–structure M is called a model of T , denote by M |= T , if all
sentences in T hold in M, i.e. for all sentences φ ∈ T , M |= φ.

We say that (M, . . . ) is elementary equivalent to (N, . . . ),
denoted by M ≡ N, if T (M) = T (N).

Example

(Q, <) ≡ (R, <) as dense linear order, but (Q,+, ·, 0, 1) ∕≡ (R,+, ·, 0, 1).

Model theorist do not want to distinguish between elementary equivalent
structures. We are interested in understanding rather the theory of a
structure than the particular structure itself. Hence we study all models
of a given theory or any theory with a particular property.
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Model Theory

Classifying first order theories, i.e. distinguishing between tame
structures (e.g. the complex field) and wild structures (e.g. the ring
of integers).

⇒ Examine the definable sets of a structure, i.e. set that can be
expressed by a first order formula.

For a L–structure M, a parameter set A ⊂ M and an L(A)–formula φ(x)
(where x is an n–tuple), we write φ(M) for the set of realizations of φ in
M, i.e.

φ(M) = {m ∈ Mn |M |= φ(m)}
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Model Theory

Classifying first order theories, i.e. distinguishing between tame
structures (e.g. the complex field) and wild structures (e.g. the ring
of integers).

⇒ Examine the definable sets of a structure, i.e. set that can be
expressed by a first order formula.

For a L–structure M, a parameter set A ⊂ M and an L(A)–formula φ(x)
(where x is an n–tuple), we write φ(M) for the set of realizations of φ in
M, i.e.

φ(M) = {m ∈ Mn |M |= φ(m)}

The notion of definable sets generalizes for example the concept of
algebraic varieties and constructible sets in algebraic geometry. For
instance, Chevalley’s theorem shows that in an algebraically closed field,
definable sets are constructible sets.
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Definable sets in R

Definable sets in R1.

(R) as an infinite sets: The only sets one can define are given by
finite conjunctions of equalities and inequalities, i.e. finite and
cofinite sets. Such structures are called strongly minimal.
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Definable sets in R1.

(R) as an infinite sets: The only sets one can define are given by
finite conjunctions of equalities and inequalities, i.e. finite and
cofinite sets. Such structures are called strongly minimal.

(R, <) Dense linear orders without endpoints: Finite unions of
intervals. Such structures are called o–minimal.
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Definable sets in R

Definable sets in R1.

(R) as an infinite sets: The only sets one can define are given by
finite conjunctions of equalities and inequalities, i.e. finite and
cofinite sets. Such structures are called strongly minimal.

(R, <) Dense linear orders without endpoints: Finite unions of
intervals. Such structures are called o–minimal.

In (R,+, ·, 0, 1) viewed as field. One can define the order as follows:

a < b ⇐⇒ ∃y : y ∕= 0 ∧ a+ y2 = b

Hence, we get at least all intervals. These are indeed all of the
definable sets. Hence the reals as a field are also o–minimal.
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Definable sets in R

Definable sets in R1.

(R) as an infinite sets: The only sets one can define are given by
finite conjunctions of equalities and inequalities, i.e. finite and
cofinite sets. Such structures are called strongly minimal.

(R, <) Dense linear orders without endpoints: Finite unions of
intervals. Such structures are called o–minimal.

In (R,+, ·, 0, 1) viewed as field. One can define the order as follows:

a < b ⇐⇒ ∃y : y ∕= 0 ∧ a+ y2 = b

Hence, we get at least all intervals. These are indeed all of the
definable sets. Hence the reals as a field are also o–minimal.

In higher dimension, in (R,+, ·, 0, 1) one can define the zero sets of
polynomial in multiple variables, i.e. R–rational points of an affine
varieties.

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

Examples of definable subgroups

Let (G , ·, 1) be a group.
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Examples of definable subgroups

Let (G , ·, 1) be a group.

The center Z (G ) of a group (i.e. all elements that commute with
any other element of G ):

Z (G ): φ(x) ≡ ∀y x · y = y · x
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Let (G , ·, 1) be a group.

The center Z (G ) of a group (i.e. all elements that commute with
any other element of G ):

Z (G ): φ(x) ≡ ∀y x · y = y · x
The centralizer of an element g (i.e. all elements that commute
with g):

CG (g): φ(x ; g) ≡ x · g = g · x

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

Examples of definable subgroups

Let (G , ·, 1) be a group.

The center Z (G ) of a group (i.e. all elements that commute with
any other element of G ):

Z (G ): φ(x) ≡ ∀y x · y = y · x
The centralizer of an element g (i.e. all elements that commute
with g):

CG (g): φ(x ; g) ≡ x · g = g · x
CG (g0, . . . , gn): φ(x ; g0, . . . , gn) ≡

󰁙n
i=0 x · gi = gi · x

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

Examples of definable subgroups

Let (G , ·, 1) be a group.

The center Z (G ) of a group (i.e. all elements that commute with
any other element of G ):

Z (G ): φ(x) ≡ ∀y x · y = y · x
The centralizer of an element g (i.e. all elements that commute
with g):

CG (g): φ(x ; g) ≡ x · g = g · x
CG (g0, . . . , gn): φ(x ; g0, . . . , gn) ≡

󰁙n
i=0 x · gi = gi · x

The intersection of finitely many definable subgroups is definable.
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Examples of definable subgroups

Let (G , ·, 1) be a group.

The center Z (G ) of a group (i.e. all elements that commute with
any other element of G ):

Z (G ): φ(x) ≡ ∀y x · y = y · x
The centralizer of an element g (i.e. all elements that commute
with g):

CG (g): φ(x ; g) ≡ x · g = g · x
CG (g0, . . . , gn): φ(x ; g0, . . . , gn) ≡

󰁙n
i=0 x · gi = gi · x

The intersection of finitely many definable subgroups is definable.

Given a definable group H, we can define
CG (H) : φ(x , ā) ≡ ∀y ∈ H xy = yx .
NG (H): φ(x , ā) ≡ ∀y ∈ H → x−1yx ∈ H;
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Let G be a group, H and K be two subgroups of G and A a definable
subset of G .
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Example of non definable subgroups

Let G be a group, H and K be two subgroups of G and A a definable
subset of G .

[H,K ] =
󰁞

n∈N

󰀫
n󰁜

i=0

gi : gi = [hi , ki ], hi ∈ H, ki ∈ K

󰀬

with [hi , ki ] = h−1
i k−1

i hiki
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Let G be a group, H and K be two subgroups of G and A a definable
subset of G .

[H,K ] =
󰁞

n∈N

󰀫
n󰁜

i=0

gi : gi = [hi , ki ], hi ∈ H, ki ∈ K

󰀬

with [hi , ki ] = h−1
i k−1

i hiki

〈A〉 =
󰁞

n∈N

󰀫
n󰁜

i=0

ai : ai ∈ A

󰀬
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Example of non definable subgroups

Let G be a group, H and K be two subgroups of G and A a definable
subset of G .

[H,K ] =
󰁞

n∈N

󰀫
n󰁜

i=0

gi : gi = [hi , ki ], hi ∈ H, ki ∈ K

󰀬

with [hi , ki ] = h−1
i k−1

i hiki

〈A〉 =
󰁞

n∈N

󰀫
n󰁜

i=0

ai : ai ∈ A

󰀬

They are the infinite union of definable sets but not necessarily definable
themselves.
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Back to tame and wild structures

The distinction between tame structures and wild structures is based on
combinatorial notions of tameness identified by Shelah in the 1970s.
Essentially, they say how “complicated” definable binary relations are:
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Back to tame and wild structures

The distinction between tame structures and wild structures is based on
combinatorial notions of tameness identified by Shelah in the 1970s.
Essentially, they say how “complicated” definable binary relations are:

Let L be a language, M = (M, . . . ) be an L–theory, and φ(x , y) be an
L(A)–formula for some A ⊂ M. Consider the binary relation R defined by

R(a, b) ⇐⇒ M |= φ(a, b).

What properties can such a relation R have in a given structure/theory?

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

Back to tame and wild structures

The distinction between tame structures and wild structures is based on
combinatorial notions of tameness identified by Shelah in the 1970s.
Essentially, they say how “complicated” definable binary relations are:

Let L be a language, M = (M, . . . ) be an L–theory, and φ(x , y) be an
L(A)–formula for some A ⊂ M. Consider the binary relation R defined by

R(a, b) ⇐⇒ M |= φ(a, b).

What properties can such a relation R have in a given structure/theory?

T is stable, if R does not encode a linear order.
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Coding a Linear Order

Assume we have two sequences (ai )i∈ω and (bi )i∈ω as below and a
formula φ(x , y). We will draw an edge between ai and
bj ⇐⇒ |= φ(ai , bj)

a0 a1 a2 . . . an−1 an an+1 . . .

b0 b1 b2 b3 . . . bn bn+1 bn+2 . . .

This defines linear order on (ai , bi )i∈ω by

(ai , bi ) < (aj , bj) ⇐⇒ |= φ(ai , bj)
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We will draw an edge between ai and bj ⇐⇒ |= φ(ai , bj)
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Coding a Linear Order

Assume we have two sequences (ai )i∈ω and (bi )i∈ω as below and a
formula φ(x , y).
We will draw an edge between ai and bj ⇐⇒ |= φ(ai , bj)

a0 a1 a2 . . . an−1 an an+1 . . .

b0 b1 b2 b3 . . . bn bn+1 bn+2 . . .

This defines linear order on (ai , bi )i∈ω by

(ai , bi ) < (aj , bj) ⇐⇒ |= φ(ai , bj)
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Stable Theories: Formal definition

a0 a1 a2 . . . an−1 an an+1 . . .

b0 b1 b2 b3 . . . bn bn+1 bn+2 . . .

Definition

A formula φ(x , y) has the order property if there are a sequences of
tuples (ai : i ∈ ω) and (bj : j ∈ ω) in M such that

M |= φ(ai , bj) if and only if i < j .
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Stable Theories: Formal definition

a0 a1 a2 . . . an−1 an an+1 . . .

b0 b1 b2 b3 . . . bn bn+1 bn+2 . . .

Definition

A formula φ(x , y) has the order property if there are a sequences of
tuples (ai : i ∈ ω) and (bj : j ∈ ω) in M such that

M |= φ(ai , bj) if and only if i < j .

A theory is called stable, if no formula has the order property.
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C (in particular all algebraically closed fields)
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Examples

C (in particular all algebraically closed fields)

All separably closed fields, i.e. fields with no separable algebraic
extension.
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Examples

C (in particular all algebraically closed fields)

All separably closed fields, i.e. fields with no separable algebraic
extension.

vector spaces over any infinite field
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Examples

C (in particular all algebraically closed fields)

All separably closed fields, i.e. fields with no separable algebraic
extension.

vector spaces over any infinite field
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Examples

C (in particular all algebraically closed fields)

All separably closed fields, i.e. fields with no separable algebraic
extension.

vector spaces over any infinite field

free groups

planar graphs
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Stable Theories: Examples

Examples

C (in particular all algebraically closed fields)

All separably closed fields, i.e. fields with no separable algebraic
extension.

vector spaces over any infinite field

free groups

planar graphs

In (R,+, ·, 0, 1), we can define the order < by

a < b ⇐⇒ ∃y : y ∕= 0 ∧ a+ y2 = b

Hence this field is unstable. However the definable relations are still
well–behaved. We will see later more on this.
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transcendence dimension over the prime field. Thus we have
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a well–defined dimension (i.e. transcendence dimension)

In stable theories counterparts to these properties were developed and
thus one obtains some kind of control over and knowledge of the models
of a theory.
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Tools in T (C)

Consider the theory of C (or any algebraically closed field of some fixed
characteristic). Any model is determined up to isomorphism by its
transcendence dimension over the prime field. Thus we have

a good notion of independence (i.e. algebraic independence)

a well–defined dimension (i.e. transcendence dimension)

In stable theories counterparts to these properties were developed and
thus one obtains some kind of control over and knowledge of the models
of a theory.
For example there exists a notion of independence (so called forking
independence |⌣) that coincide with algebraic independence in C and
linear independence in vector spaces and thus generalizes these notion of
independence to all stable theories.
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Over the years, stability theory has developed into a sophisticated
subject, with many applications in algebraic geometry and number
theory. But it does not cover all mathematical structure which we would
consider to be tame.
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Over the years, stability theory has developed into a sophisticated
subject, with many applications in algebraic geometry and number
theory. But it does not cover all mathematical structure which we would
consider to be tame.
For example, in the proof in the Manin–Mumford conjecture, Hrushovski
works in ACFA (algebraically closed fields with a generic automorphism).
These are unstable but fall into the larger class of so called simple
theories.
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subject, with many applications in algebraic geometry and number
theory. But it does not cover all mathematical structure which we would
consider to be tame.
For example, in the proof in the Manin–Mumford conjecture, Hrushovski
works in ACFA (algebraically closed fields with a generic automorphism).
These are unstable but fall into the larger class of so called simple
theories.
Moreover, some other fundamental mathematical object, such as the
reals and other o–minimal structures, and valued fields such as the
p–adics fall into another class of theories: the NIP theories.
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Stepping outside of stable theories

Over the years, stability theory has developed into a sophisticated
subject, with many applications in algebraic geometry and number
theory. But it does not cover all mathematical structure which we would
consider to be tame.
For example, in the proof in the Manin–Mumford conjecture, Hrushovski
works in ACFA (algebraically closed fields with a generic automorphism).
These are unstable but fall into the larger class of so called simple
theories.
Moreover, some other fundamental mathematical object, such as the
reals and other o–minimal structures, and valued fields such as the
p–adics fall into another class of theories: the NIP theories.
These two classes of theories, also introduced by Shelah, generalize stable
theories in two complementary directions. They often still allow key
stability–theoretic concepts of independence and dimension to be applied
to mathematically important examples which are far from stable.
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simple + NIP ⇒ stable
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...

...

NIP

stable simple

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Notations and Examples
Classification Theory

NIP theories: Formal Definition

Let T be a L–theory, M = (M, . . . ) be a model of T , φ(x , y) be a
L(A)–formula for some A ⊂ M.

The formula φ(x , y) has the independence property (referred to as IP)
if there are tuples (ai : i ∈ ω) and (bI : I ⊆ ω) in M such that

M |= φ(ai , bI ) if and only if i ∈ I

A theory is called NIP, if no formula has IP.
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NIP theories: Formal Definition

Let T be a L–theory, M = (M, . . . ) be a model of T , φ(x , y) be a
L(A)–formula for some A ⊂ M.

The formula φ(x , y) has the independence property (referred to as IP)
if there are tuples (ai : i ∈ ω) and (bI : I ⊆ ω) in M such that

M |= φ(ai , bI ) if and only if i ∈ I

A theory is called NIP, if no formula has IP.

Examples

stables theories

(R,+, ·, 0, 1), in general any real closed fields

algebraically closed valued fields

ordered abelian groups
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Non–Example: Bilinear forms on Vektor spaces

Let G = ⊕i∈ωFp and G = (G ,Fp,+G , ·), where ā · b̄ =
󰁓

i∈ω aibi
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Non–Example: Bilinear forms on Vektor spaces

Let G = ⊕i∈ωFp and G = (G ,Fp,+G , ·), where ā · b̄ =
󰁓

i∈ω aibi

This structure has IP :

Let (ai : i ∈ ω), (bI : I ⊂fin ω) be such that

(āi )j = δij and (b̄I )j =

󰀫
1 j ∈ I

0 otherwise
.
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Non–Example: Bilinear forms on Vektor spaces

Let G = ⊕i∈ωFp and G = (G ,Fp,+G , ·), where ā · b̄ =
󰁓

i∈ω aibi

This structure has IP :

Let (ai : i ∈ ω), (bI : I ⊂fin ω) be such that

(āi )j = δij and (b̄I )j =

󰀫
1 j ∈ I

0 otherwise
.

Then, using compactness, we obtain that x · y = 1 witnesses IP
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Connected Components: A Tool in NIP Theories

Let A be a small parameter set. We define:

G 0
A =

󰁟
{H ≤ G : H is A–definable of finite index}

G 00
A =

󰁟
{H ≤ G : H is A–type–def. of bounded index}

G∞
A =

󰁟
{H ≤ G : H is Aut(M/A)–inv. of bounded index}

the definable/type–definable/invariant connected component of G
over A.
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Connected Components: A Tool in NIP Theories

Let A be a small parameter set. We define:

G 0
A =

󰁟
{H ≤ G : H is A–definable of finite index}

G 00
A =

󰁟
{H ≤ G : H is A–type–def. of bounded index}

G∞
A =

󰁟
{H ≤ G : H is Aut(M/A)–inv. of bounded index}

the definable/type–definable/invariant connected component of G
over A. All these are normal subgroups of G bounded index.

We have that G∞
A ⊂ G 00

A ⊂ G 0
A, and in general all these subgroups get

smaller while A grows.
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Connected Components: A Tool in NIP Theories

Let A be a small parameter set. We define:

G 0
A =

󰁟
{H ≤ G : H is A–definable of finite index}

G 00
A =

󰁟
{H ≤ G : H is A–type–def. of bounded index}

G∞
A =

󰁟
{H ≤ G : H is Aut(M/A)–inv. of bounded index}

the definable/type–definable/invariant connected component of G
over A. All these are normal subgroups of G bounded index.

We have that G∞
A ⊂ G 00

A ⊂ G 0
A, and in general all these subgroups get

smaller while A grows.

If G 0
∅ = G 0

A (resp. G 00
∅ = G 00

A or G∞
∅ = G∞

A ) we say that the
definable/type–definable/invariant connected component exist.

Theorem (Shelah, Gismatullin)

All three connected components exist for NIP group.
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Motivation

Neostability: Stable, simple, NIP, NTP2, NTP1, . . .

study definable binary relations R(x , y).
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Neostability: Stable, simple, NIP, NTP2, NTP1, . . .

study definable binary relations R(x , y).

Stable: omits ladder graph
NIP: omits some finite graph

local assumption ⇒ Global conclusion about definable binary relations:
They can be approximated by unary relations.
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Motivation

Neostability: Stable, simple, NIP, NTP2, NTP1, . . .

study definable binary relations R(x , y).

Stable: omits ladder graph
NIP: omits some finite graph

local assumption ⇒ Global conclusion about definable binary relations:
They can be approximated by unary relations.

Example (Stable: Stationary of forking)

Let T be a stable theory and p(x) and q(x) be types over M |= T . Then
there is a unique type r(x , y)/M such that

(a, b) |= r ⇐⇒ a |= p, b |= q and a |⌣M
b
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N–Classification: Restrictions on relations of arity N + 1, i.e. they should
be “approximated” by relations of arity ≤ N.
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N–Classification

N–Classification: Restrictions on relations of arity N + 1, i.e. they should
be “approximated” by relations of arity ≤ N.

Best case: Let (a0, . . . , aN) be an (N + 1)–tuple

󰁞

S⊂{0,...,N}, |S|=N

tp((ai : i ∈ S)) ⊢ tp(a0, . . . , aN)
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N–Classification

N–Classification: Restrictions on relations of arity N + 1, i.e. they should
be “approximated” by relations of arity ≤ N.

Best case: Let (a0, . . . , aN) be an (N + 1)–tuple

󰁞

S⊂{0,...,N}, |S|=N

tp((ai : i ∈ S)) ⊢ tp(a0, . . . , aN)

They are many attempts to generalize the binary versions (stable, NIP,
simple, etc.) to higher arities.

The most prominent and most studied one is the hierarchy of
n–dependent theories, a higher arity version of NIP theories. We will
concentrate the rest of the talk on these kind of theories.
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(again an edge between c  and (a  ,b  )  means that                       holds.)

Examples

iI     0
(c   ,a  ,b  )iI     0 jj

The Relation R(x,y,z) 

• does not encode the random n-hypergraph

• cannot define all subset of the Cartesian 
product of two infinite set 
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n–dependent Theories: Formal Defintion

There is no formula φ(ȳ0, . . . , ȳn−1; x̄) and tuples (āji : i ∈ ω, j ∈ n) and
(b̄I : I ⊂ ωn) in M such that

M |= ψ(ā0i0 , . . . , ā
n−1
in−1

, b̄I ) if and only if (i0, . . . , in−1) ∈ I .

For any natural number n, a structure is n–dependent if one cannot
define all subsets of an the cartesian product of n infinite sets, i. e. of
A1 × A2 × · · ·× An.

Another way of thinking of these structures, is that there are no definable
(n + 1)–ary relations which are ”random”.
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...
.
.

...
.
.
.
.

1–dep = NIP
.
.
.

stable
algebraically, separable and differential closed fields,

free groups, abelian groups, vector spaces, planar graphs

.

.

.
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1-dep = NIP
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algebraically, separable and differential closed fields,
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Fields

The Hierarchy

... Examples:

k–dep
.
.

...

3–dep
.
.

2–dep
.
.

1–dep = NIP
R, Qp, algebraically closed valued fields,

ordered abelian groups

.

.

.

stable
algebraically, separable and differential closed fields,

free groups, abelian groups, vector spaces, planar graphs

.

.

.
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... Examples:

k–dep
.
.

...

3–dep
.
.

2–dep random graph, triangle free random graph
.
.

1–dep = NIP
R, Qp, algebraically closed valued fields,

ordered abelian groups

.

.

.

stable
algebraically, separable and differential closed fields,

free groups, abelian groups, vector spaces, planar graphs

.

.

.
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... Examples:

k–dep
.
.

...

3–dep random 3-hypergraph
.
.

2–dep random graph, triangle free random graph
.
.

1–dep = NIP
R, Qp, algebraically closed valued fields,
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...
3–dep.
2–dep.

1–dep. NTP2

stable simple
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Groups

Using a construction by Mekler we obtained:

Theorem (V./Chernikov, 2019)

For every natural number n there are strictly n+1–dependent groups, i.e.
groups which are n + 1 dependent but not n–dependent.

What other algebraic examples exists?
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Bilinear forms over arbitrary fields (Grangers Example)

Consider the following 2–sorted structure:

M = (V , K , +V , ·s , +K , ·K , 〈., .〉)

V is a vector space over K of infinite dimension with addition +V

K is a field with with addition +K and multiplication ·K
·s : K × V → V is scalar multiplication

〈., .〉 : V × V → K is a symmetric or alternating non–degenerate
bilinear form.
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Fields

Bilinear forms over arbitrary fields (Grangers Example)

Consider the following 2–sorted structure:

M = (V , K , +V , ·s , +K , ·K , 〈., .〉)

V is a vector space over K of infinite dimension with addition +V

K is a field with with addition +K and multiplication ·K
·s : K × V → V is scalar multiplication

〈., .〉 : V × V → K is a symmetric or alternating non–degenerate
bilinear form.

symmetric: 〈x , y〉 = 〈y , x〉
alternating: 〈x , x〉 = 0
non–degenerate: ∀v ∈ V \ {0} ∃w ∈ V : (v ,w) ∕= 0
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Bilinear forms over arbitrary fields (Grangers Example)

Reminder

M = ( V󰁿󰁾󰁽󰂀
inf. dim.

, K , +V , ·s , +K , ·K , 〈., .〉)

〈., .〉: symmetric or alternating non–degenerate bilinear form.
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Bilinear forms over arbitrary fields (Grangers Example)

Reminder

M = ( V󰁿󰁾󰁽󰂀
inf. dim.

, K , +V , ·s , +K , ·K , 〈., .〉)

〈., .〉: symmetric or alternating non–degenerate bilinear form.

Question: K NIP ⇒ M is 2–dependent?

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Bilinear forms over arbitrary fields (Grangers Example)

Reminder

M = ( V󰁿󰁾󰁽󰂀
inf. dim.

, K , +V , ·s , +K , ·K , 〈., .〉)

〈., .〉: symmetric or alternating non–degenerate bilinear form.

Question: K NIP ⇒ M is 2–dependent?

Main obstacle: For φ ∈ LK the formula

ψ(x ; y1, y2) = φ( 〈xVi , xVj 〉 , 〈xVi , yV
lj 〉 , 〈yV

lj , y
V
mj〉 , xKi , yK

lj )
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Compostition Lemma

Theorem

Let M be an L′–structure such that its reduct to L ⊂ L′ is NIP. Let d ∈ ω, φ(x0, ..., xd−1) ∈ L
and y0, y1, y2 be arbitrary variables. For each 0 ≤ i < d, fix some 0 ≤ si , ti ≤ 2 and let

fi : M
|ysi | × M

|yti | → M|xi | be an arbitray binary function. Then the formula

ψ(y0; y1, y2) = φ(f1(ys1 , yt1 ), ..., fd (ysd−1
, ytd−1

))

is 2–dependent.
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Fields

Compostition Lemma

Theorem

Let M be an L′–structure such that its reduct to L ⊂ L′ is NIP. Let d ∈ ω, φ(x0, ..., xd−1) ∈ L
and y0, y1, y2 be arbitrary variables. For each 0 ≤ i < d, fix some 0 ≤ si , ti ≤ 2 and let

fi : M
|ysi | × M

|yti | → M|xi | be an arbitray binary function. Then the formula

ψ(y0; y1, y2) = φ(f1(ys1 , yt1 ), ..., fd (ysd−1
, ytd−1

))

is 2–dependent.

Informel/Idea:

φ(x1, . . . , xd) is NIP.
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Compostition Lemma

Theorem

Let M be an L′–structure such that its reduct to L ⊂ L′ is NIP. Let d ∈ ω, φ(x0, ..., xd−1) ∈ L
and y0, y1, y2 be arbitrary variables. For each 0 ≤ i < d, fix some 0 ≤ si , ti ≤ 2 and let

fi : M
|ysi | × M

|yti | → M|xi | be an arbitray binary function. Then the formula

ψ(y0; y1, y2) = φ(f1(ys1 , yt1 ), ..., fd (ysd−1
, ytd−1

))

is 2–dependent.

Informel/Idea:

φ(x1, . . . , xd) is NIP.

fi : M
|y∗| ×M |y∗| → M |xi | are L–definable functions.
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Compostition Lemma

Theorem

Let M be an L′–structure such that its reduct to L ⊂ L′ is NIP. Let d ∈ ω, φ(x0, ..., xd−1) ∈ L
and y0, y1, y2 be arbitrary variables. For each 0 ≤ i < d, fix some 0 ≤ si , ti ≤ 2 and let

fi : M
|ysi | × M

|yti | → M|xi | be an arbitray binary function. Then the formula

ψ(y0; y1, y2) = φ(f1(ys1 , yt1 ), ..., fd (ysd−1
, ytd−1

))

is 2–dependent.

Informel/Idea:

φ(x1, . . . , xd) is NIP.

fi : M
|y∗| ×M |y∗| → M |xi | are L–definable functions.

Then
ψ(y0; y1, y2) := φ(f1(y∗, y∗), . . . , fd(y∗, y∗))

is 2–dependent.
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Granger example and n–dependent theories

Reminder

M = ( V󰁿󰁾󰁽󰂀
inf. dim.

, K , +V , ·s , +K , ·K , 〈., .〉)

〈., .〉: symmetric or alternating non–degenerate bilinear form.

Theorem (V., Chernikov, 2021)

If K is NIP then T (M) is a strictly 2–dependent.
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Fields

Granger example and n–dependent theories

Reminder

M = ( V󰁿󰁾󰁽󰂀
inf. dim.

, K , +V , ·s , +K , ·K , 〈., .〉)

〈., .〉: symmetric or alternating non–degenerate bilinear form.

Theorem (V., Chernikov, 2021)

If K is NIP then T (M) is a strictly 2–dependent.

What about n–linear forms?
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n–linear spaces an beyond

Condsider the following 2–sorted structure:

Mn = (V , K , +V , ·s , +K , ·K , 〈 , . . . , 〉n)
where we replace the bilinear form by an n–linear form.
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Fields

n–linear spaces an beyond

Condsider the following 2–sorted structure:

Mn = (V , K , +V , ·s , +K , ·K , 〈 , . . . , 〉n)
where we replace the bilinear form by an n–linear form.

We were able to find a definition of non–degenerate alternating n–linear
forms, generalize the Composition Lemma to functions of arity n and
show the following:

Theorem (Chernikov, V.)

If K is NIP, then T (Mn) is strictly n–dependent.

If K has IPl , then T (Mn) has IPnl
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Fields

n–linear spaces an beyond

Condsider the following 2–sorted structure:

Mn = (V , K , +V , ·s , +K , ·K , 〈 , . . . , 〉n)
where we replace the bilinear form by an n–linear form.

We were able to find a definition of non–degenerate alternating n–linear
forms, generalize the Composition Lemma to functions of arity n and
show the following:

Theorem (Chernikov, V.)

If K is NIP, then T (Mn) is strictly n–dependent.

If K has IPl , then T (Mn) has IPnl

Moreover, the composition lemma has already been used to show
n–dependence of other examples:

Theorem (D’Elbée, Müller, Ramsey, Siniora)

Generic n–nilpotent Lie algebra over Fp are n–dependent.
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Algebraically and Separably closed fields

A field K is called algebraically closed if every non–zero polynomial in
K [x ] has a root in K .
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Fields

Algebraically and Separably closed fields

A field K is called algebraically closed if every non–zero polynomial in
K [x ] has a root in K .

Examples

R is NOT algebraically closed, as x2 + 1 = 0 does not have a root in
R.
C is algebraically closed.
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Fields

Algebraically and Separably closed fields

A field K is called algebraically closed if every non–zero polynomial in
K [x ] has a root in K .

Examples

R is NOT algebraically closed, as x2 + 1 = 0 does not have a root in
R.
C is algebraically closed.

A field K is called separably closed if for any separable polynomial (no
repeated roots) has a root in K .
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Stable Fields

Fact

Algebraically closed and separably closed fields are stable.
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Fields

Stable Fields

Fact

Algebraically closed and separably closed fields are stable.

Conjecture

Any stable field is separably closed.
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Fields

Stable Fields

Fact

Algebraically closed and separably closed fields are stable.

Conjecture

Any stable field is separably closed.

Theorem (Poizat)

An infinite bounded stable field is separably closed.

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Artin Schreier extensions

Definition

A field K of positiv characteristic p is called Artin–Schreier closed if any
a ∈ K the polynomial xp − x + a has a solution in K.
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Artin Schreier extensions

Definition

A field K of positiv characteristic p is called Artin–Schreier closed if any
a ∈ K the polynomial xp − x + a has a solution in K.

Theorem (Kaplan, Scanlon, Wagner)

An infinite NIP field is Artin–Schreier closed.
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Valued Fields

Let Γ be an ordered abelian group. Then a valuation of a of field K is
any map v : K → Γ ∪ {∞} which satisfies the following properties for all
a, b ∈ K :

v(a) = ∞ if and only if a = 0,

v(ab) = v(a) + v(b),

v(a+ b) ≥ min(v(a), v(b)), with equality if v(a) ∕= v(b).
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Fields

Valued Fields

Let Γ be an ordered abelian group. Then a valuation of a of field K is
any map v : K → Γ ∪ {∞} which satisfies the following properties for all
a, b ∈ K :

v(a) = ∞ if and only if a = 0,

v(ab) = v(a) + v(b),

v(a+ b) ≥ min(v(a), v(b)), with equality if v(a) ∕= v(b).

A valuation v is trivial if v(a) = 0 for all a ∈ K \ {0}, otherwise it is
non–trivial.
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Examples

Let K be any field. The map v : K → {0,∞} with v(0) = ∞ und
v(x) = 0 for all x ∕= 0 is a valuation. It is called the trivial
valuation.

If K = Q and p is a prime number, we can write any x ∈ Q× in a
unique way as pν c

d with c ∈ Z, d ∈ N and gcd(c , d) = 1 such that
p ∕ |c , d . Setting vp(x) = ν gives a valuation on Q with value group
Z. This is called the p–adic valuation.
Examples: vp(1) = 0, vp(p) = 1, vp(

1
pk ) = −k

If K = k(t) for some field k and p ∈ k(t) is irreducible, we can do
the same: write f ∈ k(t) as pν g

h with g , h ∈ k(t) and
gcd(g , h) = gcd(p, g) = gcd(p, h) = 1 and set vp(x) = ν. This is
again called the p–adic valuation and the value group is again Z.
If K = k(t), we also have another valuation with value group Z,
namely the degree valuation v∞. Here, for f , g ∈ k[t] \ {0}, we set
v∞( fg ) = deg(g)− deg(f ).
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Henselian Valued Fields

A valued field K is said to be henselian if there is a unique extension of
the valuation to the algebraic closure of K .
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Henselian Valued Fields

A valued field K is said to be henselian if there is a unique extension of
the valuation to the algebraic closure of K .

Example

The trivial valuation.
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Fields

Henselian Valued Fields

A valued field K is said to be henselian if there is a unique extension of
the valuation to the algebraic closure of K .

Example

The trivial valuation.

Q together with the p–adic valuation is not henselian.
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Henselian Valued Fields

A valued field K is said to be henselian if there is a unique extension of
the valuation to the algebraic closure of K .

Example

The trivial valuation.

Q together with the p–adic valuation is not henselian.

However, one can complete Q with respect to the p–adic absolut
value (i.e. |x |v = e−v(x)) and obtains the p–adics numbers Qp.
These are henselian.
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Stable Valued Fields

Theorem (Jahnke)

If K is an infinite stable field and v is a non–trivial henselian valuation on
K, then K is separably closed.
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Towards the Classification of 1–dependent Fields

The two main conjectures for 1–dependent fields are

The henselianity conjecture: any 1–dependent valued field is
henselian.

The Shelah conjecture: any 1–dependent field K is algebraically
closed, real closed, finite, or admits a non–trivial henselian valuation.
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Fields

Towards the Classification of 1–dependent Fields

The two main conjectures for 1–dependent fields are

The henselianity conjecture: any 1–dependent valued field is
henselian.

The Shelah conjecture: any 1–dependent field K is algebraically
closed, real closed, finite, or admits a non–trivial henselian valuation.

Theorem (Johnson, 2019)

Any infinite NIP valued field of positive characteristic is henselian.

The main ingredients of model theory are the facts, that NIP fields are
Artin–Schreier closed and the existence of the connected component.

Nadja Valentin Groups and Fields in Higher Classification Theory



Introduction
n–dependent theories

Fields

Summary of the conjectures for fields

Conjecture

Let K be a infinite field. K is

stable ⇐⇒ it is separably closed

NIP ⇐⇒ it is separably closed (stable), real closed or admits a
non–trivial henselian valuation.
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Summary of the conjectures for fields

Conjecture

Let K be a infinite field. K is

stable ⇐⇒ it is separably closed

NIP ⇐⇒ it is separably closed (stable), real closed or admits a
non–trivial henselian valuation.

n–dependent ⇐⇒
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Summary of the conjectures for fields

Conjecture

Let K be a infinite field. K is

stable ⇐⇒ it is separably closed

NIP ⇐⇒ it is separably closed (stable), real closed or admits a
non–trivial henselian valuation.

n–dependent ⇐⇒ NIP
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Fields

Summary of the conjectures for fields

Conjecture

Let K be a infinite field. K is

stable ⇐⇒ it is separably closed

NIP ⇐⇒ it is separably closed (stable), real closed or admits a
non–trivial henselian valuation.

n–dependent ⇐⇒ NIP

Since it is very hard to prove these conjectures, our first aim was to
generalize the known results in NIP theories to the n–dependent context.
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Henselianity Conjecture for n–dependent Fields

Reminder

The main ingredients: Artin–Schreier closed and the existence of the
connected component.
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Henselianity Conjecture for n–dependent Fields

Reminder

The main ingredients: Artin–Schreier closed and the existence of the
connected component.

Theorem (V., 2016)

Any infinite n–dependent field is Artin–Schreier closed.
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Henselianity Conjecture for n–dependent Fields

Reminder

The main ingredients: Artin–Schreier closed and the existence of the
connected component.

Theorem (V., 2016)

Any infinite n–dependent field is Artin–Schreier closed.

We obtained a result for the connected component in groups definable in
n–dependent theory, but sadly is was not strong enough to generalize the
proof of Johnson to the n–dependent context.
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Henselianity Conjecture for n–dependent Fields

Reminder

The main ingredients: Artin–Schreier closed and the existence of the
connected component.

Theorem (V., 2016)

Any infinite n–dependent field is Artin–Schreier closed.

We obtained a result for the connected component in groups definable in
n–dependent theory, but sadly is was not strong enough to generalize the
proof of Johnson to the n–dependent context.
However, analyzing the valued field structure closer, we did obtain the
result:
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Henselianity Conjecture for n–dependent Fields

Reminder

The main ingredients: Artin–Schreier closed and the existence of the
connected component.

Theorem (V., 2016)

Any infinite n–dependent field is Artin–Schreier closed.

We obtained a result for the connected component in groups definable in
n–dependent theory, but sadly is was not strong enough to generalize the
proof of Johnson to the n–dependent context.
However, analyzing the valued field structure closer, we did obtain the
result:

Theorem (Chernikov, V. 2021)

Any infinite n–dependent valued field of positive characteristic is
henselian.
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Thank you!
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